Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

410 Higher Engineering Mathematics


By dividing out (since the numerator and denomina-
tor are of the same degree) and resolving into partial
fractions it was shown in Problem 3, page 14:

x^2 + 1
x^2 − 3 x+ 2

≡ 1 −

2
(x− 1 )

+

5
(x− 2 )

Hence


x^2 + 1
x^2 − 3 x+ 2

dx


∫{
1 −

2
(x− 1 )

+

5
(x− 2 )

}
dx

=(x−2) ln(x−1)+5ln(x−2)+c

orx+ln

{
(x−2)^5
(x−1)^2

}
+c

Problem 4. Evaluate
∫ 3

2

x^3 − 2 x^2 − 4 x− 4
x^2 +x− 2

dx,

correct to 4 significant figures.

By dividing out and resolving into partial fractions it
was shown in Problem 4, page 15:

x^3 − 2 x^2 − 4 x− 4
x^2 +x− 2

≡x− 3 +

4
(x+ 2 )


3
(x− 1 )

Hence

∫ 3

2

x^3 − 2 x^2 − 4 x− 4
x^2 +x− 2

dx


∫ 3

2

{
x− 3 +

4
(x+ 2 )


3
(x− 1 )

}
dx

=

[
x^2
2

− 3 x+4ln(x+ 2 )−3ln(x− 1 )

] 3

2

=

(
9
2

− 9 +4ln5−3ln2

)

−( 2 − 6 +4ln4−3ln1)

=− 1. 687 ,correct to 4 significant figures.

Now try the following exercise

Exercise 162 Further problems on
integration using partial fractions with
linear factors
In Problems 1 to 5, integrate with respect tox.

1.


12
(x^2 − 9 )

dx



2ln(x− 3 )−2ln(x+ 3 )+c

or ln

{
x− 3
x+ 3

} 2
+c




2.


4 (x− 4 )
(x^2 − 2 x− 3 )

dx




5ln(x+ 1 )−ln(x− 3 )+c

or ln

{
(x+ 1 )^5
(x− 3 )

}
+c





3.


3 ( 2 x^2 − 8 x− 1 )
(x+ 4 )(x+ 1 )( 2 x− 1 )

dx
⎡ ⎢ ⎢ ⎢ ⎢ ⎣
7ln(x+ 4 )−3ln(x+ 1 )
−ln( 2 x− 1 )+c or

ln

{
(x+ 4 )^7
(x+ 1 )^3 ( 2 x− 1 )

}
+c

⎤ ⎥ ⎥ ⎥ ⎥ ⎦

4.


x^2 + 9 x+ 8
x^2 +x− 6

dx
[
x+2ln(x+ 3 )+6ln(x− 2 )+c
orx+ln{(x+ 3 )^2 (x− 2 )^6 }+c

]

5.


3 x^3 − 2 x^2 − 16 x+ 20
(x− 2 )(x+ 2 )

dx



3 x^2
2

− 2 x+ln(x− 2 )

−5ln(x+ 2 )+c



In Problems 6 and 7, evaluate the definite integrals
correct to 4 significant figures.

6.

∫ 4

3

x^2 − 3 x+ 6
x(x− 2 )(x− 1 )

dx [0.6275]
Free download pdf