Integration usingpartial fractions 411
7.∫ 64x^2 −x− 14
x^2 − 2 x− 3dx [0.8122]- Determine the value of k, given that:
∫ 1
0(x−k)
( 3 x+ 1 )(x+ 1 )dx= 0[
1
3]- The velocity constantkof a given chemical
reaction is given by:
kt=∫ (
1
( 3 − 0. 4 x)( 2 − 0. 6 x))
dxwherex=0whent=0. Show that:kt=ln{
2 ( 3 − 0. 4 x)
3 ( 2 − 0. 6 x)}41.3 Worked problemson
integration using partial
fractions with repeated linear
factors
Problem 5. Determine∫
2 x+ 3
(x− 2 )^2dx.It was shown in Problem 5, page 16:
2 x+ 3
(x− 2 )^2≡2
(x− 2 )+7
(x− 2 )^2Thus
∫
2 x+ 3
(x− 2 )^2dx≡∫ {
2
(x− 2 )+7
(x− 2 )^2}
dx=2ln(x−2)−7
(x−2)+c⎡
⎣
∫
7
(x− 2 )^2dxis determined using the algebraicsubstitutionu=(x− 2 )— see Chapter 39.⎤
⎦Problem 6. Find∫
5 x^2 − 2 x− 19
(x+ 3 )(x− 1 )^2dx.It was shown in Problem 6, page 16:5 x^2 − 2 x− 19
(x+ 3 )(x− 1 )^2≡2
(x+ 3 )+3
(x− 1 )−4
(x− 1 )^2Hence∫
5 x^2 − 2 x− 19
(x+ 3 )(x− 1 )^2dx≡∫ {
2
(x+ 3 )+3
(x− 1 )−4
(x− 1 )^2}
dx=2ln(x+3)+3ln(x−1)+4
(x−1)+corln{
(x+3)^2 (x−1)^3}
+4
(x−1)+cProblem 7. Evaluate
∫ 1− 23 x^2 + 16 x+ 15
(x+ 3 )^3dx,correct to 4 significant figures.It was shown in Problem 7, page 17:3 x^2 + 16 x+ 15
(x+ 3 )^3≡3
(x+ 3 )−2
(x+ 3 )^2−6
(x+ 3 )^3Hence∫
3 x^2 + 16 x+ 15
(x+ 3 )^3dx≡∫ 1− 2{
3
(x+ 3 )−2
(x+ 3 )^2−6
(x+ 3 )^3}
dx=[
3ln(x+ 3 )+2
(x+ 3 )+3
(x+ 3 )^2] 1− 2=(
3ln4+2
4+3
16)
−(
3ln1+2
1+3
1)=− 0. 1536 ,correct to 4 significant figures.