Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Reduction formulae 431


=4[(− 0. 054178 − 0. 1020196

− 0. 2881612 )−(− 0. 533333 )]

= 4 ( 0. 0889745 )= 0. 356

Problem 10. Determine a reduction formula for
∫ π
2
0

sinnxdxand hence evaluate

∫π
2
0

sin^6 xdx

From equation (4),

sinnxdx


=In=−

1
n

sinn−^1 xcosx+

n− 1
n

In− 2

hence
∫ π
2
0


sinnxdx=

[

1
n

sinn−^1 xcosx

]π 2

0

+

n− 1
n

In− 2

=[0−0]+
n− 1
n

In− 2

i.e. In=


n− 1
n

In− 2

Hence


∫ π
2
0


sin^6 xdx=I 6 =

5
6

I 4

I 4 =

3
4

I 2 , I 2 =

1
2

I 0

and I 0 =


∫ π
2
0

sin^0 xdx=

∫ π
2
0

1dx=

π
2

Thus


∫ π
2
0

sin^6 xdx=I 6 =

5
6

I 4 =

5
6

[
3
4

I 2

]

=

5
6

[
3
4

{
1
2

I 0

}]

=

5
6

[
3
4

{
1
2


2

]}]
=

15
96

π

(b)



cosnxdx

LetIn=


cosnxdx≡


cosn−^1 xcosxdxfrom laws
of indices.


Using integration by parts, let u=cosn−^1 x from
which,
du
dx

=(n− 1 )cosn−^2 x(−sinx)

and du=(n− 1 )cosn−^2 x(−sinx)dx

and let dv=cosxdx

from which,v=


cosxdx=sinx
Then

In=(cosn−^1 x)(sinx)



(sinx)(n− 1 )cosn−^2 x(−sinx)dx

=(cosn−^1 x)(sinx)

+(n− 1 )


sin^2 xcosn−^2 xdx

=(cosn−^1 x)(sinx)

+(n− 1 )


( 1 −cos^2 x)cosn−^2 xdx

=(cosn−^1 x)(sinx)

+(n− 1 )

{∫
cosn−^2 xdx−


cosnxdx

}

i.e.In=(cosn−^1 x)(sinx)+(n− 1 )In− 2 −(n− 1 )In

i.e.In+(n− 1 )In=(cosn−^1 x)(sinx)+(n− 1 )In− 2

i.e.nIn=(cosn−^1 x)(sinx)+(n− 1 )In− 2

Thus In=

1
n

cosn−^1 xsinx+n−n^1 In− 2 (5)

Problem 11. Use a reduction formula to
determine


cos^4 xdx.

Using equation (5),

cos^4 xdx=I 4 =

1
4

cos^3 xsinx+

3
4

I 2

and I 2 =

1
2

cosxsinx+

1
2

I 0

and I 0 =


cos^0 xdx

=


1dx=x
Free download pdf