432 Higher Engineering Mathematics
Hence∫
cos^4 xdx=1
4cos^3 xsinx+3
4(
1
2cosxsinx+1
2x)=1
4cos^3 xsinx+3
8cosxsinx+3
8x+cProblem 12. Determine a reduction formulafor∫ π 20cosnxdxand hence evaluate∫ π 20cos^5 xdxFrom equation (5),
∫
cosnxdx=1
ncosn−^1 xsinx+n− 1
nIn− 2and hence
∫ π
2
0cosnxdx=[
1
ncosn−^1 xsinx]π 20+n− 1
nIn− 2=[0−0]+n− 1
nIn− 2i.e.∫ π
2
0cosnxdx=In=n− 1
nIn− 2 (6)(Note that this is the same reduction formula as for
∫ π
2
0sinnxdx(in Problem 10) and the result is usually
known asWallis’s formula).
Thus, from equation (6),
∫ π
2
0cos^5 xdx=4
5I 3 , I 3 =2
3I 1and I 1 =∫ π
2
0cos^1 xdx=[sinx]π 2
0 =(^1 −^0 )=^1Hence∫ π
2
0cos^5 xdx=4
5I 3 =4
5[
2
3I 1]=4
5[
2
3( 1 )]
=8
15Now try the following exerciseExercise 171 Further problems on
reduction formulae for integrals of the form∫
sinnxdxand∫
cosnxdx- Use a reduction formula to determine∫
sin^7 xdx.
⎡
⎢
⎣
−1
7sin^6 xcosx−6
35sin^4 xcosx−8
35sin^2 xcosx−16
35cosx+c⎤
⎥
⎦- Evaluate
∫π
0 3sin(^3) xdx using a reduction
formula. [4]
- Evaluate
∫ π
2
0sin^5 xdx using a reductionformula.[
8
15]- Determine, using a reduction formula,∫
cos^6 xdx.
⎡
⎢
⎣
1
6cos^5 xsinx+5
24cos^3 xsinx+5
16cosxsinx+5
16x+c⎤
⎥
⎦- Evaluate
∫ π
2
0cos^7 xdx.[
16
35]44.5 Further reduction formulae
The following worked problems demonstrate further
examples where integrals can be determined using
reduction formulae.Problem 13.∫ Determine a reduction formula for
tannxdxand hence find∫
tan^7 xdx.LetIn=∫
tannxdx≡∫
tann−^2 xtan^2 xdxby the laws of indices=∫
tann−^2 x(sec^2 x− 1 )dxsince 1+tan^2 x=sec^2 x=∫
tann−^2 xsec^2 xdx−∫
tann−^2 xdx