Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

454 Higher Engineering Mathematics


47.4 Further worked problems on


homogeneous first order


differential equations


Problem 3. Solve the equation:
7 x(x−y)dy= 2 (x^2 + 6 xy− 5 y^2 )dx
given thatx=1wheny=0.

Using the procedure of section 47.2:

(i) Rearranging gives:

dy
dx

=

2 x^2 + 12 xy− 10 y^2
7 x^2 − 7 xy
which is homogeneous inxandysince each of
the terms on the right hand side is of degree 2.

(ii) Lety=vxthen

dy
dx

=v+x

dv
dx

(iii) Substituting foryand

dy
dx

gives:

v+x
dv
dx

=
2 x^2 + 12 x(vx)− 10 (vx)^2
7 x^2 − 7 x(vx)

=

2 + 12 v− 10 v^2
7 − 7 v
(iv) Separating the variables gives:

x

dv
dx

=

2 + 12 v− 10 v^2
7 − 7 v

−v

=

( 2 + 12 v− 10 v^2 )−v( 7 − 7 v)
7 − 7 v

=

2 + 5 v− 3 v^2
7 − 7 v

Hence,

7 − 7 v
2 + 5 v− 3 v^2

dv=

dx
x

Integrating both sides gives:
∫ (
7 − 7 v
2 + 5 v− 3 v^2

)
dv=


1
x

dx

Resolving

7 − 7 v
2 + 5 v− 3 v^2

into partial fractions

gives:

4
( 1 + 3 v)


1
( 2 −v)

(see chapter 2)

Hence,

∫ (
4
( 1 + 3 v)


1
( 2 −v)

)
dv=


1
x

dx

i.e.

4
3

ln( 1 + 3 v)+ln( 2 −v)=lnx+c

(v) Replacingvby

y
x

gives:

4
3

ln

(
1 +

3 y
x

)
+ln

(
2 −

y
x

)
=ln+c

or

4
3

ln

(
x+ 3 y
x

)
+ln

(
2 x−y
x

)
=ln+c

Whenx= 1 ,y=0, thus:

4
3

ln1+ln2=ln1+c
from which,c=ln 2
Hence, the particular solution is:
4
3

ln

(
x+ 3 y
x

)
+ln

(
2 x−y
x

)
=ln+ln2

i.e. ln

(
x+ 3 y
x

)^43 (
2 x−y
x

)
=ln( 2 x)

from the laws of logarithms

i.e.

(
x+ 3 y
x

) 43 (
2 x−y
x

)
= 2 x

Problem 4. Show that the solution of the
differential equation:x^2 − 3 y^2 + 2 xy

dy
dx

=0is:
y=x


( 8 x+ 1 ), given thaty=3whenx=1.

Using the procedure of section 47.2:
(i) Rearranging gives:

2 xy

dy
dx

= 3 y^2 −x^2 and

dy
dx

=

3 y^2 −x^2
2 xy

(ii) Lety=vxthen

dy
dx

=v+x

dv
dx

(iii) Substituting foryand

dy
dx

gives:

v+x

dv
dx

=

3 (vx)^2 −x^2
2 x(vx)

=

3 v^2 − 1
2 v
(iv) Separating the variables gives:

x

dv
dx

=

3 v^2 − 1
2 v

−v=

3 v^2 − 1 − 2 v^2
2 v

=

v^2 − 1
2 v

Hence,

2 v
v^2 − 1

dv=

1
x

dx

Integrating both sides gives:

2 v
v^2 − 1

dv=


1
x

dx

i.e. ln(v^2 − 1 )=lnx+c
Free download pdf