Homogeneous first order differential equations 453
(iv) Separating the variables gives:xdv
dx=v− 1 −v=− 1 , i.e.dv=−1
xdxIntegrating both sides gives:
∫
dv=∫
−
1
xdxHence,v=−lnx+c(v) Replacingvbyy
xgives:y
x=−lnx+c,whichis
the general solution.When x= 1 ,y=2, thus:2
1=−ln1+c from
which,c= 2Thus, the particular solution is:y
x=−lnx+ 2ory=−x(lnx−2)ory=x( 2 −lnx)Problem 2. Find the particular solution of theequation:xdy
dx=x^2 +y^2
y, given the boundary
conditions thaty=4whenx=1.Using the procedure of section 47.2:
(i) Rearrangingxdy
dx=x^2 +y^2
ygives:dy
dx=x^2 +y^2
xywhich is homogeneous inxandy
since each of the three terms on the right hand
side are of the same degree (i.e. degree 2).(ii) Lety=vxthen
dy
dx=v+x
dv
dx(iii) Substituting for y anddy
dxin the equation
dy
dx=x^2 +y^2
xygives:v+xdv
dx=x^2 +v^2 x^2
x(vx)=x^2 +v^2 x^2
vx^2=1 +v^2
v(iv) Separating the variables gives:xdv
dx=1 +v^2
v−v=1 +v^2 −v^2
v=1
vHence,vdv=1
xdxIntegrating both sides gives:
∫
vdv=∫
1
xdxi.e.v^2
2=lnx+c(v) Replacingvbyy
xgives:y^2
2 x^2=lnx+c,whichisthe general solution.When x= 1 ,y=4, thus:16
2=ln1+c from
which,c= 8Hence, the particular solution is:y^2
2 x^2=lnx+ 8
ory^2 =2x^2 ( 8 +lnx)Now try the following exerciseExercise 180 Further problems on
homogeneous first order differential
equations- Find the general solution of: x^2 =y^2
dy
dx.
[
−1
3ln(
x^3 −y^3
x^3)
=lnx+c]- Find the general solution of:
x−y+x
dy
dx= 0. [y=x(c−lnx)]- Find the particular solution of the differen-
tial equation:(x^2 +y^2 )dy=xydx, given that
x=1wheny=1.
[
x^2 = 2 y^2
(
lny+1
2)]- Solve the differential equation:
x+y
y−x=dy
dx.
⎡
⎣−1
2ln(
1 +2 y
x−y^2
x^2)
=lnx+c
orx^2 + 2 xy−y^2 =k⎤
⎦- Find the particular solution of the differential
equation:
(
2 y−x
y+ 2 x)
dy
dx=1 given thaty= 3whenx=2. [x^2 +xy−y^2 =1]