Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

498 Higher Engineering Mathematics


This equation is called arecurrence relation
orrecurrence formula, because each recurring
term depends on a previous term.

(iii) Substituting n=0, 1, 2, 3,...will produce
a set of relationships between the various
coefficients.
Forn=0, (y′′) 0 =− 2 (y) 0

n=1, (y′′′) 0 =− 3 (y′) 0

n=2,(y(^4 )) 0 =− 4 (y′′) 0 =− 4 {− 2 (y) 0 }

= 2 × 4 (y) 0

n=3,(y(^5 )) 0 =− 5 (y′′′) 0 =− 5 {− 3 (y′) 0 }

= 3 × 5 (y′) 0

n=4,(y(^6 )) 0 =− 6 (y(^4 )) 0 =− 6 { 2 × 4 (y) 0 }

=− 2 × 4 × 6 (y) 0

n=5,(y(^7 )) 0 =− 7 (y(^5 )) 0 =− 7 { 3 × 5 (y′) 0 }

=− 3 × 5 × 7 (y′) 0

n=6,(y(^8 )) 0 =− 8 (y(^6 )) 0 =

− 8 {− 2 × 4 × 6 (y) 0 }= 2 × 4 × 6 × 8 (y) 0

(iv) Maclaurin’s theorem from page 69 may be
written as:

y=(y) 0 +x(y′) 0 +

x^2
2!

(y′′) 0 +

x^3
3!

(y′′′) 0

+

x^4
4!

(y(^4 )) 0 + ···

Substituting the above values into Maclaurin’s
theorem gives:

y=(y) 0 +x(y′) 0 +

x^2
2!

{− 2 (y) 0 }

+

x^3
3!

{− 3 (y′) 0 }+

x^4
4!

{ 2 × 4 (y) 0 }

+
x^5
5!

{ 3 × 5 (y′) 0 }+
x^6
6!

{− 2 × 4 × 6 (y) 0 }

+

x^7
7!

{− 3 × 5 × 7 (y′) 0 }

+

x^8
8!

{ 2 × 4 × 6 × 8 (y) 0 }

(v) Collecting similar terms together gives:

y=(y) 0

{
1 −

2 x^2
2!

+

2 × 4 x^4
4!


2 × 4 × 6 x^6
6!

+

2 × 4 × 6 × 8 x^8
8!

− ···

}
+(y′) 0

{
x−

3 x^3
3!

+

3 × 5 x^5
5!


3 × 5 × 7 x^7
7!

+ ···

}

i.e.y=(y) 0

{
1 −

x^2
1

+

x^4
1 × 3


x^6
3 × 5

+

x^8
3 × 5 × 7

− ···

}

+(y′) 0 ×

{
x
1


x^3
1 × 2

+
x^5
2 × 4


x^7
2 × 4 × 6

+···

}

The boundary conditions are that atx= 0 ,y= 1
and

dy
dx

=2, i.e.(y) 0 =1and(y′) 0 =2.

Hence, the power series solution of the differen-

tial equation:

d^2 y
dx^2

+x

dy
dx

+ 2 y=0is:

y=

{
1 −

x^2
1

+

x^4
1 × 3


x^6
3 × 5

+

x^8
3 × 5 × 7

−···

}
+ 2

{
x
1


x^3
1 × 2

+

x^5
2 × 4


x^7
2 × 4 × 6

+···

}

Problem 6. Determine the power series solution
of the differential equation:
d^2 y
dx^2

+

dy
dx

+xy=0 given the boundary conditions

that atx=0,y=0and

dy
dx

=1, using
Leibniz–Maclaurin’s method.

Following the above procedure:

(i) The differential equation is rewritten as:
y′′+y′+xy=0and from the Leibniz theorem of
Free download pdf