Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

500 Higher Engineering Mathematics



  1. Show that the power series solution of the dif-
    ferential equation:(x+ 1 )


d^2 y
dx^2

+(x− 1 )

dy
dx


2 y=0, using the Leibniz–Maclaurin method,
isgivenby:y= 1 +x^2 +exgiventheboundary
conditions that atx=0,y=

dy
dx

=1.


  1. Find the particular solution of the differ-
    ential equation:(x^2 + 1 )


d^2 y
dx^2

+x

dy
dx

− 4 y= 0
using the Leibniz–Maclaurin method, given
the boundary conditions that atx=0,y= 1
and

dy
dx

=1.
[
y= 1 +x+ 2 x^2 +

x^3
2


x^5
8

+

x^7
16

+···

]


  1. Use the Leibniz–Maclaurin method to deter-
    minethepower series solution for thedifferen-
    tial equation:x


d^2 y
dx^2

+

dy
dx

+xy=1 given that

atx=0,y=1and

dy
dx

=2.

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢

⎢⎢

y=

{
1 −

x^2
22

+

x^4
22 × 42


x^6
22 × 42 × 62

+ ···

}
+ 2

{
x−

x^3
32

+

x^5
32 × 52


x^7
32 × 52 × 72

+···

}

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥

⎥⎥

52.5 Power series solution by the


Frobenius method


A differential equation of the formy′′+Py′+Qy=0,
wherePandQare both functions ofx, such that the
equation can be represented by a power series, may be
solved by theFrobenius method.
The following4-step proceduremaybeusedinthe
Frobenius method:
(i) Assume a trial solution of the form y=
xc

{
a 0 +a 1 x+a 2 x^2 +a 3 x^3 +···+arxr+···

}

(ii) differentiate the trial series,

(iii) substitute the results in the given differential
equation,

(iv) equate coefficients of corresponding powers of
the variable on each side of the equation;
this enables index c and coefficientsa 1 , a 2 ,
a 3 , ... from the trial solution, to be determined.
This introductory treatment of the Frobenius method
covering the simplest cases is demonstrated, using the
above procedure, in the following worked problems.

Problem 7. Determine, using the Frobenius
method, the general power series solution of the

differential equation: 3x

d^2 y
dx^2

+

dy
dx

−y=0.

The differential equation may be rewritten as:
3 xy′′+y′−y=0.
(i) Let a trial solution be of the form

y=xc

{
a 0 +a 1 x+a 2 x^2 +a 3 x^3 +···

+arxr+···

}
(16)

wherea 0 =0,

i.e. y=a 0 xc+a 1 xc+^1 +a 2 xc+^2 +a 3 xc+^3
+ ···+arxc+r+··· (17)

(ii) Differentiating equation (17) gives:

y′=a 0 cxc−^1 +a 1 (c+ 1 )xc

+a 2 (c+ 2 )xc+^1 +···

+ar(c+r)xc+r−^1 +···

and y′′=a 0 c(c− 1 )xc−^2 +a 1 c(c+ 1 )xc−^1

+a 2 (c+ 1 )(c+ 2 )xc+···

+ar(c+r− 1 )(c+r)xc+r−^2 + ···

(iii) Substitutingy,y′andy′′into each term of the
given equation 3xy′′+y′−y=0gives:

3 xy′′= 3 a 0 c(c− 1 )xc−^1 + 3 a 1 c(c+ 1 )xc

+ 3 a 2 (c+ 1 )(c+ 2 )xc+^1 +···

+ 3 ar(c+r− 1 )(c+r)xc+r−^1 +···(a)

y′=a 0 cxc−^1 +a 1 (c+ 1 )xc+a 2 (c+ 2 )xc+^1

+···+ar(c+r)xc+r−^1 +··· (b)

−y=−a 0 xc−a 1 xc+^1 −a 2 xc+^2 −a 3 xc+^3

−···−arxc+r−··· (c)
Free download pdf