Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

An introduction to partial differential equations 527


from which,X=Acospx+Bsinpx


and Y=Cepy+De−py


or Y=Ccoshpy+Dsinhpy


or Y=Esinhp(y+φ)


Hence u(x,y)=XY


={Acospx+Bsinpx}{Esinhp(y+φ)}

or u(x,y)


={Pcospx+Qsinpx}{sinhp(y+φ)}

whereP=AEandQ=BE.


The first boundary condition is: u( 0 ,y)= 0 , hence
0 =Psinhp(y+φ)from which,P=0.
Hence,u(x,y)=Qsinpxsinhp(y+φ).
The second boundary condition is:u( 1 ,y)= 0 ,hence
0 =Qsinp( 1 )sinhp(y+φ)from which,
sinp= 0 ,hence,p=nπ forn= 1 , 2 , 3 ,...
The third boundary condition is:u(x, 0 )= 0 ,hence,
0 =Qsinpxsinhp(φ)from which,
sinhp(φ)=0andφ=0.
Hence,u(x,y)=Qsinpxsinhpy.
Since there are many solutions for integer values ofn,


u(x,y)=

∑∞

n= 1

Qnsinpxsinhpy

=

∑∞

n= 1

Qnsinnπxsinhnπy (a)

The fourth boundary condition is:u(x, 1 )= 4 =f(x),


hence,f(x)=

∑∞

n= 1

Qnsinnπxsinhnπ( 1 ).

From Fourier series coefficients,


Qnsinhnπ= 2 ×the mean value of
f(x)sinnπxfromx=0tox= 1

i.e. =


2
1

∫ 1

0

4sinnπxdx

= 8

[

cosnπx

] 1

0

=−
8

(cosnπ−cos0)

=

8

( 1 −cosnπ)

= 0 (for even values ofn),

=

16

(for odd values ofn)

Hence, Qn=

16
nπ(sinhnπ)

=

16

cosechnπ

Hence, from equation (a),

u(x,y)=

∑∞

n= 1

Qnsinnπxsinhnπy

=

16
π

∑∞

n(odd)= 1

1
n

(cosechnπsinnπxsinhnπy)

Now try the following exercise

Exercise 203 Further problemson the
Laplace equation


  1. A rectangular plate is bounded by the
    linesx= 0 ,y= 0 ,x=1andy= 3 .Apply the


Laplace equation

∂^2 u
∂x^2

+

∂^2 u
∂y^2

=0 to determine
thepotentialdistributionu(x,y)overtheplate,
subject to the following boundary conditions:
u=0whenx= 00 ≤y≤2,
u=0whenx= 10 ≤y≤ 2 ,
u=0wheny= 20 ≤x≤ 1 ,
u=5wheny= 30 ≤x≤1.

⎣u(x,y)=^20
π

∑∞
n(odd)= 1

1
n
cosechnπsinnπxsinhnπ(y− 2 )




  1. A rectangular plate is bounded by the
    linesx= 0 ,y= 0 ,x= 3 ,y= 2 .Determine the
    potential distributionu(x,y)over the rec-
    tangle using the Laplace equation
    ∂^2 u
    ∂x^2


+

∂^2 u
∂y^2

=0, subject to the following
boundary conditions:
u( 0 ,y)= 00 ≤y≤2,
u( 3 ,y)= 00 ≤y≤2,
u(x, 2 )= 00 ≤x≤3,
u(x, 0 )=x( 3 −x) 0 ≤x≤3.

⎣u(x,y)=^216
π^3

∑∞
n(odd)= 1

1
n^3 cosech

2 nπ
3 sin

nπx
3 sinh


3 (^2 −y)


Free download pdf