Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Introduction to Laplace transforms 585


=

1
s^2 +a^2

[( 0 )− 1 ( 0 −a)]

=

a
s^2 +a^2

(provideds> 0 )

(b) From equation (1),


L{t^2 }=

∫∞

0

e−stt^2 dt

=

[
t^2 e−st
−s


2 te−st
s^2


2e−st
s^3

]∞

0
by integration by parts twice,

=

[
( 0 − 0 − 0 )−

(
0 − 0 −

2
s^3

)]

=

2
s^3

(provideds> 0 )

(c) From equation (1),


L{coshat}=L

{
1
2

(eat+e−at)

}
,

from Chapter 5

=

1
2

L{eat}+

1
2

L{e−at},

equations (2) and (3)

=

1
2

(
1
s−a

)
+

1
2

(
1
s−(−a)

)

from (iii) of Table 61.1

=

1
2

[
1
s−a

+

1
s+a

]

=

1
2

[
(s+a)+(s−a)
(s−a)(s+a)

]

=

s
s^2 −a^2

(provideds>a)

Problem 4. Determine the Laplace transforms of:
(a) sin^2 t (b) cosh^23 x.

(a) Since cos2t= 1 −2sin^2 tthen

sin^2 t=

1
2

( 1 −cos2t). Hence,

L{sin^2 t}=L

{
1
2

( 1 −cos2t)

}

=

1
2

L{ 1 }−

1
2

L{cos2t}

=

1
2

(
1
s

)

1
2

(
s
s^2 + 22

)

from (i) and (v) of Table 61.1

=

(s^2 + 4 )−s^2
2 s(s^2 + 4 )

=

4
2 s(s^2 + 4 )

=
2
s(s^2 +4)

(b) Since cosh 2x=2cosh^2 x−1then
cosh^2 x=

1
2

( 1 +cosh2x)from Chapter 5.

Hence cosh^23 x=

1
2

( 1 +cosh 6x)

ThusL{cosh^23 x}=L

{
1
2

( 1 +cosh 6x)

}

=

1
2

L{ 1 }+

1
2

L{cosh6x}

=

1
2

(
1
s

)
+

1
2

(
s
s^2 − 62

)

=

2 s^2 − 36
2 s(s^2 − 36 )

=

s^2 − 18
s(s^2 −36)

Problem 5. Find the Laplace transform of
3sin(ωt+α),whereωandαare constants.

Using the compound angle formula for sin(A+B),
from Chapter 17, sin(ωt+α)may be expanded to
(sinωtcosα+cosωtsinα). Hence,
L{3sin(ωt+α)}
=L{ 3 (sinωtcosα+cosωtsinα)}
=3cosαL{sinωt}+3sinαL{cosωt},
sinceαis a constant

=3cosα

(
ω
s^2 +ω^2

)
+3sinα

(
s
s^2 +ω^2

)

from (iv) and (v) of Table 61.1

=

3
(s^2 +ω^2 )

(ωcosα+ssinα)

Now try the following exercise

Exercise 219 Further problems on an
introduction to Laplace transforms

Determine the Laplace transforms in Problems
1to9.
Free download pdf