584 Higher Engineering Mathematics
Table 61.1Elementary standard Laplace transforms
Function Laplace transforms
f(t) L{f(t)}=∫∞
0 e−stf(t)dt(i) 1
1
s(ii) kk
s(iii) eat1
s−a(iv) sinata
s^2 +a^2(v) cosat
s
s^2 +a^2(vi) t1
s^2(vii) t^22!
s^3(viii) tn(n= 1 , 2 , 3 ,...)n!
sn+^1(ix) coshat
s
s^2 −a^2(x) sinhata
s^2 −a^2(a) L{
1 + 2 t−1
3t^4}=L{ 1 }+ 2 L{t}−1
3L{t^4 },from equations (2) and (3)=1
s+ 2(
1
s^2)
−1
3(
4!
s^4 +^1)
,from (i), (vi) and (viii) of Table 61.1=1
s+2
s^2−1
3(
4. 3. 2. 1
s^5)=1
s+2
s^2−8
s^5(b) L{5e^2 t−3e−t}= 5 L(e^2 t)− 3 L{e−t},
from equations (2) and (3)= 5(
1
s− 2)
− 3(
1
s−(− 1 ))
,from (iii) of Table 61.1=5
s− 2−3
s+ 1=5 (s+ 1 )− 3 (s− 2 )
(s− 2 )(s+ 1 )=2 s+ 11
s^2 −s− 2Problem 2. Find the Laplace transforms of:
(a) 6sin3t−4cos5t (b)2cosh2θ−sinh3θ.(a) L{6sin3t−4cos5t}= 6 L{sin3t}− 4 L{cos5t}= 6(
3
s^2 + 32)
− 4(
s
s^2 + 52)
,from(iv)and(v)ofTable61.1=18
s^2 + 9−4 s
s^2 + 25(b) L{2cosh2θ−sinh3θ}= 2 L{cosh 2θ}−L{sinh3θ}= 2(
s
s^2 − 22)
−(
3
s^2 − 32)from(ix)and(x)ofTable61.1=2 s
s^2 − 4−3
s^2 − 9Problem 3. Prove that
(a)L{sinat}=a
s^2 +a^2(b)L{t^2 }=2
s^3(c)L{coshat}=s
s^2 −a^2(a) From equation (1),L{sinat}=∫∞0e−stsinatdt=[
e−st
s^2 +a^2(−ssinat−acosat)]∞0
by integration by parts,=1
s^2 +a^2[e−s(∞)(−ssina(∞)−acosa(∞))−e^0 (−ssin0
−acos 0)]