Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Chapter 62


Properties of Laplace


transforms


62.1 The Laplace transform ofeatf(t)


FromChapter61,thedefinitionoftheLaplacetransform
off(t)is:


L{f(t)}=

∫∞

0

e−stf(t)dt (1)

ThusL{eatf(t)}=

∫∞

0

e−st(eatf(t))dt

=

∫∞

0

e−(s−a)f(t)dt (2)

(where a is a real constant)

Hence the substitution of(s−a)forsin the transform
shown in equation (1) corresponds to the multiplication
of the original functionf(t)by eat. This is known as a
shift theorem.


62.2 Laplace transforms of the form


eatf(t)


From equation (2), Laplace transforms of the form
eatf(t)may be deduced. For example:


(i) L{eattn}

SinceL{tn}=

n!
sn+^1

from (viii) of Table 61.1,
page 584.

thenL{eattn}=

n!
(s−a)n+^1

from equation (2)
above (provideds>a).

(ii) L{eatsinωt}

SinceL{sinωt}=

ω
s^2 +ω^2

from (iv) of Table
61.1, page 584.

then L{eatsinωt}=

ω
(s−a)^2 +ω^2

from equa-
tion (2) (provideds>a).
(iii) L{eatcoshωt}

SinceL{coshωt}=

s
s^2 −ω^2

from (ix) of Table
61.1, page 584.

thenL{eatcoshωt}=

s−a
(s−a)^2 −ω^2

from equa-
tion (2) (provideds>a).
A summary of Laplace transforms of the form
eatf(t)is shown in Table 62.1.

Table 62.1Laplace transforms of the form
eatf(t)

Function eatf(t) Laplace transform
(ais a real constant) L{eatf(t)}

(i) eattn

n!
(s−a)n+^1
(ii) eatsinωt

ω
(s−a)^2 +ω^2
(iii) eatcosωt

s−a
(s−a)^2 +ω^2
(iv) eatsinhωt

ω
(s−a)^2 −ω^2
(v) eatcoshωt

s−a
(s−a)^2 −ω^2
Free download pdf