588 Higher Engineering Mathematics
Problem 1. Determine (a)L{ 2 t^4 e^3 t}
(b)L{4e^3 tcos5t}.(a) From (i) of Table 62.1,L{ 2 t^4 e^3 t}= 2 L{t^4 e^3 t}= 2(
4!
(s− 3 )^4 +^1)=2 ( 4 )( 3 )( 2 )
(s− 3 )^5=48
(s−3)^5(b) From (iii) of Table 62.1,L{4e^3 tcos5t}= 4 L{e^3 tcos5t}= 4(
s− 3
(s− 3 )^2 + 52)=4 (s− 3 )
s^2 − 6 s+ 9 + 25=4(s−3)
s^2 − 6 s+ 34Problem 2. Determine (a)L{e−^2 tsin3t}
(b)L{3eθcosh4θ}.(a) From (ii) of Table 62.1,L{e−^2 tsin3t}=3
(s−(− 2 ))^2 + 32=3
(s+ 2 )^2 + 9=3
s^2 + 4 s+ 4 + 9=3
s^2 + 4 s+ 13(b) From (v) of Table 62.1,L{3eθcosh 4θ}= 3 L{eθcosh 4θ}=3 (s− 1 )
(s− 1 )^2 − 42=3 (s− 1 )
s^2 − 2 s+ 1 − 16=3 (s− 1 )
s^2 − 2 s− 15Problem 3. Determine the Laplace transforms of
(a) 5e−^3 tsinh2t(b) 2e^3 t(4cos2t−5sin2t).(a) From (iv) of Table 62.1,L{5e−^3 tsinh2t}= 5 L{e−^3 tsinh2t}= 5(
2
(s−(− 3 ))^2 − 22)=
10
(s+ 3 )^2 − 22=
10
s^2 + 6 s+ 9 − 4=10
s^2 + 6 s+ 5(b) L{2e^3 t(4cos2t−5sin2t)}= 8 L{e^3 tcos2t}− 10 L{e^3 tsin2t}=8 (s− 3 )
(s− 3 )^2 + 22−10 ( 2 )
(s− 3 )^2 + 22from (iii) and (ii) of Table 62.1=8 (s− 3 )− 10 ( 2 )
(s− 3 )^2 + 22=8 s− 44
s^2 − 6 s+ 13Problem 4. Show thatL{
3e−1
2 xsin^2 x}
=48
( 2 s+ 1 )( 4 s^2 + 4 s+ 17 )Since cos2x= 1 −2sin^2 x,sin^2 x=1
2( 1 −cos2x).Hence,L{
3e−1
2 xsin^2 x}=L{
3e−1
2 x^1
2( 1 −cos 2x)}=3
2L{
e−1
2 x}
−3
2L{
e−1
2 xcos2x}=3
2⎛
⎜
⎜
⎝1s−(
−1
2)⎞
⎟
⎟
⎠−3
2⎛
⎜
⎜
⎜
⎝(
s−(
−1
2))(
s−(
−1
2)) 2
+ 22⎞
⎟
⎟
⎟
⎠from (iii) of Table 61.1 (page 584) and (iii)
of Table 62.1 above,=32(
s+
1
2)−3(
s+1
2)2[(
s+1
2) 2
+ 22]=3
2 s+ 1−6 s+ 34(
s^2 +s+1
4+ 4)