Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Fourier series for periodic functions of period 2π 615


=

5
2 π

{[
−cos

[
2 π

( 1
2 +n

)]
( 1
2 +n

)


cos

[
2 π

( 1
2 −n

)]
( 1
2 −n

)

]


[
−cos0
( 1
2 +n

)−

cos0
( 1
2 −n

)

]}

Whennis both odd and even,


an=

5
2 π

{[
1
( 1
2 +n

)+

1
( 1
2 −n

)

]


[
− 1
( 1
2 +n

)−

1
( 1
2 −n

)

]}

=

5
2 π

{
2
( 1
2 +n

)+

2
( 1
2 −n

)

}

=

5
π

{
1
( 1
2 +n

)+

1
( 1
2 −n

)

}

Hence


a 1 =

5
π

[
1
3
2

+

1
−^12

]
=

5
π

[
2
3


2
1

]
=

− 20
3 π

a 2 =

5
π

[
1
5
2

+

1
−^32

]
=

5
π

[
2
5


2
3

]
=

− 20
( 3 )( 5 )π

a 3 =

5
π

[
1
7
2

+

1
−^52

]
=

5
π

[
2
7


2
5

]
=

− 20
( 5 )( 7 )π
andsoon

bn=

1
π

∫ 2 π

0

5sin

θ
2

sinnθdθ

=

5
π

∫ 2 π

0


1
2

{
cos

[
θ

(
1
2

+n

)]

−cos

[
θ

(
1
2

−n

)]}

from Chapter 40

=

5
2 π

[
sin

[
θ

( 1
2 −n

)]
( 1
2 −n

) −

sin

[
θ

( 1
2 +n

)]
( 1
2 +n

)

] 2 π

0

=

5
2 π

{[
sin2π

( 1
2 −n

)
( 1
2 −n

) −

sin2π

( 1
2 +n

)
( 1
2 +n

)

]


[
sin0
( 1
2 −n

)−

sin0
( 1
2 +n

)

]}

Whennis both odd and even,bn=0sincesin(−π),
sin0, sinπ,sin3π,...are all zero. Hence the Fourier
series for the rectified sine wave,

i=5sin

θ
2

is given by:

f(θ )=a 0 +

∑∞

n= 1

(ancosnθ+bnsinnθ)

i.e. i=f(θ )=

10
π


20
3 π

cosθ−

20
( 3 )( 5 )π

cos2θ


20
( 5 )( 7 )π

cos3θ−···

i.e. i=
20
π

(
1
2


cosθ
( 3 )


cos2θ
( 3 )( 5 )


cos3θ
( 5 )( 7 )

−···

)

Now try the following exercise

Exercises228 Further problemson Fourier
series of periodic functions of period 2π


  1. Determine the Fourier series for the periodic
    function:


f(x)=

{
− 2 , when −π<x< 0

+ 2 , when 0<x<π

which is periodic outside this range of
period 2π.




f(x)=

8
π

(
sinx+

1
3

sin3x

+

1
5

sin5x+···

)






  1. For the Fourier series in Problem 1, deduce a
    series for


π
4

at the point wherex=

π
2
[
π
4

= 1 −

1
3

+

1
5


1
7

+···

]
Free download pdf