Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

618 Higher Engineering Mathematics


x

f(x) f(x) 52 x

22  2  0
22 



2 

2  3 

Figure 67.2

From Section 66.3(i),

a 0 =

1
2 π

∫π

−π

f(x)dx

=
1
2 π

∫π

−π

2 xdx=
2
2 π

[
x^2
2


−π

= 0

an=

1
π

∫π

−π

f(x)cosnxdx=

1
π

∫π

−π

2 xcosnxdx

=

2
π

[
xsinnx
n



sinnx
n

dx


−π
by parts(see Chapter 43)

=

2
π

[
xsinnx
n

+

cosnx
n^2


−π

=

2
π

[(
0 +

cosnπ
n^2

)

(
0 +

cosn(−π)
n^2

)]
= 0

bn=

1
π

∫π

−π

f(x)sinnxdx=

1
π

∫π

−π

2 xsinnxdx

=

2
π

[
−xcosnx
n


∫ (
−cosnx
n

)
dx


−π
by parts

=

2
π

[
−xcosnx
n
+

sinnx
n^2


−π

=

2
π

[(
−πcosnπ
n

+

sinnπ
n^2

)


(
−(−π)cosn(−π)
n

+

sinn(−π)
n^2

)]

=

2
π

[
−πcosnπ
n


πcos(−nπ)
n

]
=

− 4
n

cosnπ

When n is odd, bn=

4
n

. Thus b 1 =4, b 3 =


4
3

,

b 5 =

4
5

, and so on.

When n is even, bn=

− 4
n

. Thus b 2 =−


4
2

,

b 4 =−

4
4
,b 6 =−

4
6
, and so on.

Thus f(x)= 2 x=4sinx−

4
2

sin2x+

4
3

sin3x


4
4

sin4x+

4
5

sin5x−

4
6

sin6x+···

i.e. 2 x= 4

(
sinx−

1
2

sin2x+

1
3

sin3x−

1
4

sin4x

+

1
5

sin5x−

1
6

sin6x+···

)
(1)

for values of f(x)between−π andπ.Forvalues
of f(x)outside the range−πto+πthe sum of the
series is not equal tof(x).

Problem 2. In the Fourier series of Problem 1, by
lettingx=π/2, deduce a series forπ/4.

Whenx=π/2, f(x)=πfrom Fig. 67.2.
Thus, from the Fourier series of equation (1):

2


2

)
= 4

(
sin

π
2


1
2

sin

2 π
2

+

1
3

sin

3 π
2


1
4

sin

4 π
2

+

1
5

sin

5 π
2


1
6

sin

6 π
2

+···

)

π= 4

(
1 − 0 −

1
3

− 0 +

1
5

− 0 −

1
7

−···

)

i.e.

π
4

= 1 −

1
3

+

1
5


1
7

+···

Problem 3. Obtain a Fourier series for the
function defined by:

f(x)=

{
x, when 0<x<π
0 , whenπ<x< 2 π.

ThedefinedfunctionisshowninFig.67.3between0and
2 π. The function is constructed outside of this range so
that it is periodic of period 2π, as shown by the broken
line in Fig. 67.3.
For a Fourier series:

f(x)=a 0 +

∑∞

n= 1

(ancosnx+bnsinnx)
Free download pdf