Fourier series for a non-periodic function over range 2π 619
xf(x) f(x) 5 x22 2 02 3 Figure 67.3
It is more convenient in this case to take the limits from 0
to2πinstead of from−πto+π.ThevalueoftheFourier
coefficientsareunalteredbythischangeoflimits.Hence
a 0 =1
2 π∫ 2 π0f(x)dx=1
2 π[∫π0xdx+∫ 2 ππ0dx]=1
2 π[
x^2
2]π0=1
2 π(
π^2
2)
=π
4an=1
π∫ 2 π0f(x)cosnxdx=1
π[∫π0xcosnxdx+∫ 2 ππ0dx]=1
π[
xsinnx
n+cosnx
n^2]π0
(from Problem 1,by parts)=1
π{[
πsinnπ
n+cosnπ
n^2]
−[
0 +cos0
n^2]}=1
πn^2(cosnπ− 1 )Whennis even,an=0.
Whennis odd,an=
− 2
πn^2Hencea 1 =
− 2
π
,a 3 =− 2
32 π
,a 5 =− 2
52 π
, and so onbn=1
π∫ 2 π0f(x)sinnxdx=1
π[∫π0xsinnxdx−∫ 2 ππ0dx]=1
π[
−xcosnx
n+sinnx
n^2]π0
(from Problem 1,by parts)=1
π{[
−πcosnπ
n+sinnπ
n^2]
−[
0 +sin0
n^2]}=1
π[
−πcosnπ
n]
=−cosnπ
nHenceb 1 =−cosπ=1,b 2 =−1
2,b 3 =1
3, and so on.Thus the Fourier series is:f(x)=a 0 +∑∞n= 1(ancosnx+bnsinnx)i.e. f(x)=π
4−2
πcosx−2
32 πcos3x−2
52 πcos5x−···+sinx−1
2sin2x+1
3sin3x−···i.e. f(x)=π
4−2
π(
cosx+cos3x
32+cos5x
52+···)+(
sinx−1
2sin2x+1
3sin3x−···)Problem 4. For the Fourier series of Problem 3:
(a) what is the sum of the series at the point of
discontinuity (i.e. atx=π)? (b) what is the
amplitude and phase angle of the third harmonic?
and (c) letx=0, and deduce a series forπ^2 /8.(a) The sum of the Fourier series at the point of dis-
continuity is given by the arithmetic mean of the
two limiting values off(x)asxapproaches the
point of discontinuity from the two sides.
Hence sum of the series atx=πis
π− 0
2=π
2
(b) The third harmonic term of the Fourier series is
(
−2
32 πcos3x+1
3sin3x)This may also bewrittenin theformcsin( 3 x+α),where amplitude,c=√√
√
√[(
− 2
32 π) 2
+(
1
3) 2 ]= 0. 341