Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

620 Higher Engineering Mathematics


and phase angle,

α=tan−^1




− 2
32 π
1
3




=− 11. 98 ◦ or − 0 .209radians

Hence the third harmonic is given by
0 .341 sin(3x− 0 .209)
(c) Whenx=0,f(x)=0 (see Fig. 67.3).

Hence, from the Fourier series:

0 =

π
4


2
π

(
cos0+

1
32

cos0+

1
52

cos0+···

)
+( 0 )

i.e. −

π
4

=−

2
π

(
1 +

1
32

+

1
52

+

1
72

+···

)

Hence

π^2
8

= 1 +

1
32

+

1
52

+

1
72

+···

Problem 5. Deduce the Fourier series for the
functionf(θ )=θ^2 in the range 0 to 2π.

f(θ )=θ^2 is shown in Fig. 67.4 in the range 0 to 2π.
The function is not periodic but is constructed outside
of this range so that it is periodicof period 2π,asshown
by the broken lines.

f() f() 5  2

24  22  0 2  4 

4 ^2



Figure 67.4

For a Fourier series:

f(x)=a 0 +

∑∞

n= 1

(ancosnx+bnsinnx)

a 0 =

1
2 π

∫ 2 π

0

f(θ )dθ=

1
2 π

∫ 2 π

0

θ^2 dθ

=

1
2 π

[
θ^3
3

] 2 π

0

=

1
2 π

[
8 π^3
3

− 0

]
=

4 π^2
3

an=

1
π

∫ 2 π

0

f(θ )cosnθdθ

=

1
π

∫ 2 π

0

θ^2 cosnθdθ

=

1
π

[
θ^2 sinnθ
n

+

2 θcosnθ
n^2


2sinnθ
n^3

] 2 π

0
by parts

=

1
π

[(
0 +

4 πcos2πn
n^2

− 0

)
−( 0 )

]

=

4
n^2

cos2πn=

4
n^2

whenn= 1 , 2 , 3 ,...

Hencea 1 =

4
12

,a 2 =

4
22

,a 3 =

4
32

and so on

bn=

1
π

∫ 2 π

0

f(θ )sinnθdθ=

1
π

∫ 2 π

0

θ^2 sinnθdθ

=

1
π

[
−θ^2 cosnθ
n

+

2 θsinnθ
n^2

+

2cosnθ
n^3

] 2 π

0
by parts

=

1
π

[(
− 4 π^2 cos2πn
n

+ 0 +

2cos2πn
n^3

)


(
0 + 0 +

2cos0
n^3

)]

=

1
π

[
− 4 π^2
n

+

2
n^3


2
n^3

]
=

− 4 π
n

Henceb 1 =

− 4 π
1

,b 2 =

− 4 π
2

,b 3 =

− 4 π
3

, and so on.

Thus f(θ )=θ^2

=

4 π^2
3

+

∑∞

n= 1

(
4
n^2

cosnθ−

4 π
n

sinnθ

)

i.e. θ^2 =
4 π^2
3

+ 4

(
cosθ+

1
22

cos2θ+

1
32

cos3θ+···

)

− 4 π

(
sinθ+

1
2

sin2θ+

1
3

sin3θ+···

)

for values ofθbetween 0 and 2π.

Problem 6. In the Fourier series of Problem 5, let
θ=πand determine a series for

π^2
12
Free download pdf