Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

The complex or exponential form of a Fourier series 647


Hence, the extended complex form of the Fourier series
shown in equation (14) becomes:

f(x)=

5
2

+

5
π

ej

πx

(^2) −
5
3 π
ej
3 πx
(^2) +
5
5 π
ej
5 πx
2

5
7 π
ej
7 πx
(^2) +···+
5
π
e−j
πx
2

5
3 π
e−j
3 πx
(^2) +
5
5 π
e−j
5 πx
2

5
7 π
e−j
7 πx
(^2) + ···


5
2



  • 5
    π
    (
    ej
    πx
    (^2) +e−j
    πx
    2
    )

    5
    3 π
    (
    ej
    3 πx
    (^2) +e−j
    3 πx
    2
    )


  • 5
    5 π
    (
    e
    5 πx
    (^2) +e−j
    5 πx
    2
    )
    − ···


    5
    2




  • 5
    π
    ( 2 )
    (
    ej
    πx
    (^2) +e−j
    πx
    2
    2
    )

    5
    3 π
    ( 2 )
    (
    ej
    3 πx
    (^2) +e−j
    3 πx
    2
    2
    )




  • 5
    5 π
    ( 2 )
    (
    ej
    5 π 2 x
    +e−j
    5 π 2 x
    2
    )
    − ···


    5
    2




  • 10
    π
    cos
    (πx
    2
    )

    10
    3 π
    cos
    (
    3 πx
    2
    )




  • 10
    5 π
    cos
    (
    5 πx
    2
    )
    − ···
    (from equation (3))
    i.e.f(x)=
    5
    2




  • 10
    π
    [
    cos
    (πx
    2
    )

    1
    3
    cos
    (
    3 πx
    2
    )




  • 1
    5
    cos
    (
    5 πx
    2
    )
    −···
    ]
    which is the same as obtained on page 632.
    Hence,
    ∑∞
    n=−∞
    5
    πn
    sin

    2
    ej
    π 2 nx
    is equivalent to
    5
    2




  • 10
    π
    [
    cos
    (πx
    2
    )

    1
    3
    cos
    (
    3 πx
    2
    )




  • 1
    5
    cos
    (
    5 πx
    2
    )
    −···
    ]
    Problem 2. Show that the complex Fourier series
    for the functionf(t)=tin the ranget=0tot=1,
    and of period 1, may be expressed as:
    f(t)=
    1
    2




  • j
    2 π
    ∑∞
    n=−∞
    ej^2 πnt
    n
    The saw tooth waveform is shown in Figure 71.2.
    Period L 51
    f(t)
    f(t) 5 t
    2 10 12t
    Figure 71.2
    From equation (11), the complex Fourier series is
    given by:
    f(t)=
    ∑∞
    n=−∞
    cnej
    2 πnt
    L
    and when the period,L=1, then:
    f(t)=
    ∑∞
    n=−∞
    cnej^2 πnt
    where, from equation (12),
    cn=
    1
    L
    ∫ L
    2
    −L 2
    f(t)e−j
    2 πnt
    L dt=^1
    L
    ∫ L
    0
    f(t)e−j
    2 πnt
    L dt
    and whenL=1andf(t)=t, then:
    cn=
    1
    1
    ∫ 1
    0
    te−j
    2 π 1 nt
    dt=
    ∫ 1
    0
    te−j^2 πntdt
    Using integration by parts (see Chapter 43), letu=t,
    from which,
    du
    dt
    = 1 ,and dt=du,and
    let dv=e−j^2 πnt, from which,
    v=

    e−j^2 πntdt=
    e−j^2 πnt
    −j 2 πn



Free download pdf