Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Maclaurin’s series 71


Substituting these values into equation (5) gives:


f(x)=ln( 1 +x)= 0 +x( 1 )+

x^2
2!

(− 1 )

+

x^3
3!

( 2 )+

x^4
4!

(− 6 )+

x^5
5!

( 24 )

i.e.ln( 1 +x)=x−

x^2
2

+

x^3
3


x^4
4

+

x^5
5

−···

Problem 7. Expand ln( 1 −x)to five terms.

Replacing x by −x in the series for ln( 1 +x)in
Problem 6 gives:


ln( 1 −x)=(−x)−

(−x)^2
2

+

(−x)^3
3


(−x)^4
4

+

(−x)^5
5

−···

i.e.ln(1−x)=−x−

x^2
2


x^3
3


x^4
4


x^5
5

−···

Problem 8. Determine the power series for
ln

(
1 +x
1 −x

)
.

ln


(
1 +x
1 −x

)
=ln( 1 +x)−ln( 1 −x)by the laws of log-

arithms, and from Problems 6 and 7,


ln

(
1 +x
1 −x

)
=

(
x−

x^2
2

+

x^3
3


x^4
4

+

x^5
5

−···

)


(
−x−

x^2
2


x^3
3


x^4
4


x^5
5

−···

)

= 2 x+

2
3

x^3 +

2
5

x^5 +···

i.e.ln

(
1 +x
1 −x

)
= 2

(
x+

x^3
3

+

x^5
5

+ ···

)

Problem 9. Use Maclaurin’s series to find the
expansion of( 2 +x)^4.

f(x)=( 2 +x)^4 f( 0 )= 24 = 16
f′(x)= 4 ( 2 +x)^3 f′( 0 )= 4 ( 2 )^3 = 32

f′′(x)= 12 ( 2 +x)^2 f′′( 0 )= 12 ( 2 )^2 = 48

f′′′(x)= 24 ( 2 +x)^1 f′′′( 0 )= 24 ( 2 )= 48

fiv(x)= 24 fiv( 0 )= 24

Substituting in equation (5) gives:

( 2 +x)^4

=f( 0 )+xf′( 0 )+

x^2
2!

f′′( 0 )+

x^3
3!

f′′′( 0 )+

x^4
4!

fiv( 0 )

= 16 +(x)( 32 )+

x^2
2!

( 48 )+

x^3
3!

( 48 )+

x^4
4!

( 24 )

= 16 + 32 x+ 24 x^2 + 8 x^3 +x^4

(This expression could have been obtained by applying
the binomial theorem.)

Problem 10. Expand e

x 2
as far as the term inx^4.

f(x)=e

x

(^2) f( 0 )=e^0 = 1
f′(x)=
1
2
e
x 2
f′( 0 )=
1
2
e^0 =
1
2
f′′(x)=
1
4
e
x 2
f′′( 0 )=
1
4
e^0 =
1
4
f′′′(x)=
1
8
e
x
(^2) f′′′( 0 )=
1
8
e^0 =
1
8
fiv(x)=
1
16
e
x
(^2) fiv( 0 )=
1
16
e^0 =
1
16
Substituting in equation (5) gives:
e
x
(^2) =f( 0 )+xf′( 0 )+
x^2
2!
f′′( 0 )



  • x^3
    3!
    f′′′( 0 )+
    x^4
    4!
    fiv( 0 )+···
    = 1 +(x)
    (
    1
    2
    )


  • x^2
    2!
    (
    1
    4
    )




  • x^3
    3!
    (
    1
    8
    )




  • x^4
    4!
    (
    1
    16
    )
    +···
    i.e. e
    x
    (^2) = 1 +^1
    2
    x+
    1
    8
    x^2 +
    1
    48
    x^3 +
    1
    384
    x^4 +···



Free download pdf