130 CHAPTER 3. MATHEMATICAL FOUNDATIONS
Letu∈W^1 ,p(T∗M),u= (u 1 ,···,un). Then,
divu=Dkuk=gklDl(uk) =Dl(glkuk)
=(by( 3. 2. 24 ))
=
1
√
−g
∂
∂xl
(
√
(3.2.25) −gglkuk).
The formula (3.2.24) and (3.2.25) give expression of divuas:
(3.2.26) divu=
1
√
−g
∂
∂xk
(
√
−guk) foru∈W^1 ,p(TM),
1
√
−g
∂
∂xk
(
√
−ggklul) foru∈W^1 ,p(T∗M).
3.Laplace operators.The Laplace operatorDkDkinRnis in the familiar form
DkDk=
∂
∂xk
∂
∂xk
.
However, the Laplace operatorsDkDkdefined on a Riemannian manifold are usually very
complex.
By (3.2.20) and (3.2.22), we have
W^2 ,p(TrkM)
∇k
→W^1 ,p(Trk+ 1 M)div→Lp(TrkM),
W^2 ,p(TrkM)∇
k
→W^1 ,p(Trk+^1 M)→divLp(TrkM).
Hence, the Laplace operator div·∇is the mapping:
(3.2.27) div·∇:W^2 ,p(TrkM)→Lp(TrkM).
By (3.2.21) and (3.2.23), div·∇is written as
div·∇=DkDk=gklDkDl.
4.Expression ofdiv·∇onM⊗pR^1 .A scalar fielduonMcan be regarded asu:M→
M⊗pR^1. In this case,∇uis written as
∇u=
(
∂u
∂x^1
,···,
∂u
∂xn
)
.
By (3.2.26), we get that
(3.2.28) div·∇u=
1
√
−g
∂
∂xk
(
√
−ggkl
∂u
∂xl
)
.
5.Expression ofdiv·∇on TM.A vector fieldu:M→TMcan be written as
u= (u^1 ,···,un),