Mathematical Principles of Theoretical Physics

(Rick Simeone) #1

4.3. UNIFIED FIELD MODEL BASED ON PID AND PRI 203


Thus, the PID equations (4.1.33)-(4.1.34) can be expressed as


(4.3.8)


δL
δgμ ν
=Dgμφνg,

δL
δAμ

=Deμφe,

δL
δWμa

=Dwμφaw,

δL
δSkμ

=Dsμφks,

whereφνgis a vector field, andφe,φw,φsare scalar fields.


With the PID equations (4.3.8), the PRI covariant unified field equations are then given
as follows:^1


Rμ ν−

1


2


gμ νR=−
8 πG
c^4

(4.3.9) Tμ ν+Dgμφνg,


(4.3.10) ∂μ(∂μAν−∂νAμ)−eJν=Deνφe,


Gabw

[


∂μWμ νb−gwλcdbgα βWα νcWβd

]


(4.3.11) −gwJνa=Dνwφaw,


Gk js

[


∂μSμ νj −gsΛcdjgα βScα νSβd

]


(4.3.12) −gsQνk=Dνsφks,


(4.3.13) (iγμDμ−m)ψe= 0 ,


(4.3.14) (iγμDμ−ml)ψw= 0 ,


(4.3.15) (iγμDμ−mq)ψs= 0 ,


whereDgμ,Deν,Dwν,Dsνare given by (4.3.6), and


(4.3.16)


Jν=ψeγνψe,
Jνa=ψwγνσaψw,
Qνk=ψsγντkψs,

Tμ ν=

δS
δgμ ν

+


c^4
16 πG

gα β(GabwWα μaWβ νb +GklsSα μk Sβ νl +Aα μAβ ν)


c^4
16 πG

gμ ν(LEM+LW+LS).

Remark 4.11.It is clear that the action (4.3.1)-(4.3.4) for the unified field model is invariant


(^1) We ignore the Klein-Gordon fields.

Free download pdf