4.3. UNIFIED FIELD MODEL BASED ON PID AND PRI 203
Thus, the PID equations (4.1.33)-(4.1.34) can be expressed as
(4.3.8)
δL
δgμ ν
=Dgμφνg,
δL
δAμ
=Deμφe,
δL
δWμa
=Dwμφaw,
δL
δSkμ
=Dsμφks,
whereφνgis a vector field, andφe,φw,φsare scalar fields.
With the PID equations (4.3.8), the PRI covariant unified field equations are then given
as follows:^1
Rμ ν−
1
2
gμ νR=−
8 πG
c^4
(4.3.9) Tμ ν+Dgμφνg,
(4.3.10) ∂μ(∂μAν−∂νAμ)−eJν=Deνφe,
Gabw
[
∂μWμ νb−gwλcdbgα βWα νcWβd
]
(4.3.11) −gwJνa=Dνwφaw,
Gk js
[
∂μSμ νj −gsΛcdjgα βScα νSβd
]
(4.3.12) −gsQνk=Dνsφks,
(4.3.13) (iγμDμ−m)ψe= 0 ,
(4.3.14) (iγμDμ−ml)ψw= 0 ,
(4.3.15) (iγμDμ−mq)ψs= 0 ,
whereDgμ,Deν,Dwν,Dsνare given by (4.3.6), and
(4.3.16)
Jν=ψeγνψe,
Jνa=ψwγνσaψw,
Qνk=ψsγντkψs,
Tμ ν=
δS
δgμ ν
+
c^4
16 πG
gα β(GabwWα μaWβ νb +GklsSα μk Sβ νl +Aα μAβ ν)
−
c^4
16 πG
gμ ν(LEM+LW+LS).
Remark 4.11.It is clear that the action (4.3.1)-(4.3.4) for the unified field model is invariant
(^1) We ignore the Klein-Gordon fields.