4.6. WEAK INTERACTION THEORY 237
Thus we obtain
∂μJwμ=i
gw
hc ̄
ωaWμbψ γμ[σa,σb]ψ=− 2
gw
̄hc
(4.6.20) εabcωaWμbJμc.
Here we used[σa,σb] =i 2 εabcσcandJcμ=ψ γμσcψ.Note that
εabcωaWμb=
∣ ∣ ∣ ∣ ∣ ∣
~i ~j ~k
ω 1 ω 2 ω 3
Wμ^1 Wμ^2 Wμ^3
∣ ∣ ∣ ∣ ∣ ∣
=~ω×W~μ,
where~ω= (ω 1 ,ω 2 ,ω 3 ),W~μ= (Wμ^1 ,Wμ^2 ,Wμ^3 ). Hence, (4.6.20) can be rewritten as
(4.6.21) ∂μJμw=−
2 gw
hc ̄
(~ω×~Wμ)·J~μ,
andJ~μ= (J 1 μ,J 2 μ,J 3 μ). The weak current densityJaμis as
Jaμ=θaμδ(r), θaμ the constant tensor,
andW~μin (4.6.21) is replaced by the average value
(4.6.22)
1
|Bρw|
∫
Bρw
W~μdx,
whereBρw⊂Rnis the ball with radiusρw. Similar to the case (4.5.14) for the strong interac-
tion, the average value (4.6.22) is
W~μ=~ζμ/ρw, ~ζμ= (ζμ^1 ,ζμ^2 ,ζμ^3 ).
Thus, (4.6.21) can be expressed as
(4.6.23) ∂μJwμ=−κ δ(r)/ρw,
andκis a parameter, written as
(4.6.24) κ=
2 gw
hc ̄
~θμ·(~ω×~ζμ).
Putting (4.6.23) in (4.6.14) we deduce that
−∆φw+k 02 φw=−
gwκ
ρw
δ(r),
whose solution is given by
(4.6.25) φw=−
gwκ
ρw
1
r
e−k^0 r.
Therefore we obtain the solution of (4.6.14) in the form (4.6.25).