246 CHAPTER 4. UNIFIED FIELD THEORY
- U( 1 )gauge transformation:
L→e
i
2 βL,
φ→e−
2 iβ
φ,
R→eiβR,
Wμa→Wμa−
2
g 2
∂μβ,
Bμ→Bμ+
2
g 2
∂μβ.
4.4.2 Gravitational field equations derived by PID.
(4.6.58)
δLWS
δWμa
= 0 ,
δLWS
δBμ
= 0 ,
δLWS
δ φ
= 0 ,
δLWS
δL
= 0 ,
δL
δR
= 0.
We remark here that the Higgs field in this setting is includedin the Lagrangian action,
drastically different from the mechanism based on PID developed earlier.
In addition, the particleφ+represents a massless boson with a positive electric charge.
However, in reality no such particles exist. Hence we have totake the Higgs scalar field as
(4.6.59) φ=
(
0
φ
)
.
In fact, in the WS theory, the Higgs fieldφis essentially taken as the form (4.6.59). Under
the condition (4.6.59), the variational equations (4.6.58) of the SW action (4.6.55)-(4.6.57)
are expressed as follows:
Gauge field equations (massless):
(4.6.60)
∂νWν μ^1 −g 1 gα α(Wα μ^2 Wα^3 −Wα μ^3 Wα^2 )+
g 1
2
Jμ^1 −
g^21
2
φ^2 Wμ^1 = 0 ,
∂νWν μ^2 −g 1 gα α(Wα μ^3 Wα^1 −Wα μ^1 Wα^3 )+
g 1
2
Jμ^2 −
g^21
2
φ^2 Wμ^2 = 0 ,
∂νWν μ^3 −g 1 gα α(Wα μ^1 Wα^2 −Wα μ^2 Wα^1 )+
g 1
2
Jμ^3 −
g 1
2
φ^2 (g 1 Wμ^3 −g 2 Bμ) = 0 ,
∂νBν μ−
g 2
2
JμL−g 2 JRμ−
g 2
2
φ^2 (g 2 Bμ−g 1 Wμ^3 ) = 0.
Higgs field equations:
∂μ∂μφ−
1
4
(4.6.61) φ(g 12 WμaWμa+g^22 BμBμ− 2 g 1 g 2 Wμ^3 Bμ)
−λ φ(φ^2 −a^2 )+Gl(lLR+RlL) = 0.
Dirac equations:
(4.6.62)
iγμ(∂μ+ig 2 Bμ)R−GlφlL= 0 ,
iγμ(∂μ+i
g 2
2
Bμ−i
g 1
2
Wμaσa)
(
νL
lL
)
−GlR
(
0
φ