4.6. WEAK INTERACTION THEORY 245
- The fields in the electroweak theory are as follows:
SU( 2 )gauge fields: Wμ^1 ,Wμ^2 ,Wμ^3 ,
U( 1 )gauge field: Bμ,
Dirac spinor doublets: L=
(
νL
lL
)
,
Dirac spinor singlet: R=lR,
Higgs scalar doublet: φ=
(
φ+
φ^0
)
,
whereνLandlLare the left-hand neutrino and lepton,lRis the right-hand lepton,(φ+,φ^0 )
are scalar fields with electric charge (1,0).
- The Lagrangian action of the electroweak theory is given by
(4.6.55) LWS=LG+LD+LH,
whereLGis the gauge sector,LDis the Dirac sector, andLHis the Higgs sector:
(4.6.56)
LG=−
1
4
Wμ νaWμ νa−
1
4
Bμ νBμ ν,
LD=iLγμDμL+iRγμDμR,
LH=
1
2
(Dμφ)†(Dμφ)+
λ
4
(φ†φ−a^2 )^2 −Gl(LφR+Rφ†L).
Hereλ,a,Glare constants,
(4.6.57)
Wμ νa =∂μWνa−∂νWμa+g 1 εbcaWμbWνc,
Bμ ν=∂μBν−∂νBμ,
DμR= (∂μ+ig 2 Bμ)R,
DμL= (∂μ+i
g 2
2
Bμ−i
g 1
2
Wμaσa)L,
Dμφ= (∂μ−i
g 2
2
Bμ−i
g 1
2
Wμaσa)φ,
g 1 ,g 2 are coupling constants ofSU( 2 )andU( 1 )gauge fields, andσa( 1 ≤a≤ 3 )are the
Pauli matrices.
- The action (4.6.55)-(4.6.57) is invariant under the followingSU( 2 )andU( 1 )gauge
transformations:
- SU( 2 )gauge transformation:
L→e
i
2 θaσaL,
φ→e
i 2 θaσa
φ,
R→R,
Wμa→Wμa−
2
g 1
∂μθa+εbcaθbWμc, i.e. as in (2.4.38),
Bμ→Bμ.