DESIGN OF SURFACES 223or in matrix form
r 3 (u,v)
= [ ( ) ( ) ( ) ( )](0) (0)
(1) (1)
(0) (1)
(0) (1)()
()
()
()012300 10 0 1
01 11 0 1
0 0 00 10
1 1 01 110
1
2
3φφφφφ
φ
φ
φvvvvPPs s
PPs s
tt
tt
⎡⎣⎢
⎢
⎢
⎢⎤⎦⎥
⎥
⎥
⎥⎡⎣⎢
⎢
⎢
⎢⎤⎦⎥
⎥
⎥
⎥u
u
u
u(7.44)The overall bi-cubic Coon’s patch is given by
r(u,v) = [φ 0 (v) φ 1 (v) φ 2 (v) φ 3 (v)] [b 0 (u) b 1 (u) t 0 (u) t 1 (u)]T+ [ ( ) ( ) ( ) ( )]()()()()01010123aassvvvvφφφφuuuu⎡⎣⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎤⎦⎥ ⎥ ⎥ ⎥ ⎥ ⎥ –[() () () ()](0) (0)(1) (1)(0) (1)(0) (1)()()()()012300 10 0 101 11 0 10 0 00 101 1 01 110123φφφφφφφφvvvvPPs sPPs stttt⎡⎣⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎤⎦⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎡⎣⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎤⎦⎥ ⎥ ⎥ ⎥ ⎥ ⎥uuuu(7.45)To verify from above that the other boundary conditions are met, we see that
r(0,v) = [φ 0 (v) φ 1 (v) φ 2 (v) φ 3 (v)] [b 0 (0) b 1 (0) t 0 (0) t 1 (0)]T+ ( ) – [ ( ) ( ) ( ) ( )]
(0)(0)0 0123 = ( )000101a 0PPttvvvvvvφφφφ a⎡⎣⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎤⎦⎥ ⎥ ⎥ ⎥ ⎥ ⎥r(1,v) = [φ 0 (v) φ 1 (v) φ 2 (v) φ 3 (v)] [b 0 (1) b 1 (1) t 0 (1) t 1 (1)]T+ ( ) – [ ( ) ( ) ( ) ( )]
(1)(1)1 0123 = ( )101101a 1PPttvvvvvvφφφφ a⎡⎣⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎤⎦⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ∂∂ur(u,v) = [φ 0 (v) φ 1 (v) φ 2 (v) φ 3 (v)] ∂
∂∂
∂∂
∂∂
∂⎡
⎣⎢⎤
u ⎦⎥
u
u
u
u
u
u
0101 () () () ()uT
bbtt