FINITE ELEMENT METHOD 327=Ai/A,Nj(x,y) = Aj/Aand Nk(x,y) = Ak/A are all greater than or equal to zero. Further, if P is at node
j,Aj = A and so Nj(x,y) = 1 while Ni(x,y) = Nk(x,y) = 0. Following the same argument to choose the
interpolation scheme for u in Eq. (11.10a), we can use a similar expression for y displacements as
well, that is
vvvvvvv = + + = ( , ) + ( , ) + ( , )
A
AA
AA
Ai i j j k k Nxyiij jN xy N xykk(11.10f)Ifu = [ui vi uj vj uk vk]T is the displacement vector for the element, then
u Nxy N xy N xy
Nxy Nxy Nxyijk
v iii⎛
⎝⎞
⎠⎛
⎝⎞
⎠
=(, ) 0 (, ) 0 (, ) 0
0 (, ) 0 (, ) 0 (, )
uNu = (11.10g)The strain εx along the x direction is defined as ∂
∂
u
x
while that in the ydirection,εy is given by ∂
∂v
y
.The shear strain γxy is expressed as ∂
∂
∂
∂u
yx+ v. The strain vector εεεεεmay be written as = =00 =00ε
ε
γx
y
xyxyyxuxyyx⎛⎝⎜
⎜⎜⎞⎠⎟
⎟⎟∂ ∂ ∂ ∂ ∂ ∂∂
∂⎛⎝⎜
⎜
⎜
⎜
⎜⎞⎠⎟
⎟
⎟
⎟
⎟⎛
⎝
⎜⎞
⎠
⎟∂ ∂ ∂ ∂ ∂ ∂∂
∂⎛⎝⎜
⎜
⎜
⎜
⎜⎞⎠⎟
⎟
⎟
⎟
⎟vNu=(, ) 0 (, ) 0 (, ) 00 (, ) 0 (, ) 0 (, )( , ) ( , ) ( , ) ( ,∂
∂∂
∂∂
∂
∂
∂∂
∂∂
∂
∂
∂∂
∂∂
∂∂
∂xNxy
xNxy
xNxyyNxy
yNxy
yNxyyNxy
xNxy
yNxy
xNxyijkijkii j j)) ( , ) ( , )∂
∂∂
∂⎛⎝⎜
⎜
⎜
⎜
⎜
⎜⎜⎞⎠⎟
⎟
⎟
⎟
⎟
⎟⎟
yNxy
x
kkNxy(11.10h)
Now
∂
∂∂
∂Nxy
xyy
ANxy
yxx
Ai(, ) = j – k i k j
2
,(, )
=- 2
∂
∂
∂
∂Nxy
xyy
ANxy
yxx
Aj(, ) k i j i k
=- 2
,
(, )
=- 2
∂
∂∂
∂Nxy
xyy
ANxy
yxx
Ak(, ) = ij – k ji
2
,
(, )
=- 2
so that
=^1
2- 0 – 0 – 0
0 – 0 – 0 – - – – – – –
=
Ayy yy yy
xx xx xx
xxyyxxyyxxyyj kkiij
k jik ji
k jjk i kkij ii j⎛⎝⎜
⎜⎜⎞⎠⎟
⎟⎟
uBu (11.10i)