Fundamentals of Plasma Physics

(C. Jardin) #1

388 Chapter 13. Fokker-Planck theory of collisions


θ^2 .Thus, we obtain


∆vrel∆vrel|allb,φ = v^3 rel∆tfF(vF)dvF

∫^2 π

0


λ∫D

bπ/ 2

θ^2

(


ˆxxˆcos^2 φ+ˆyyˆsin^2 φ

)


bdb

= v^3 rel∆tfF(vF)dvFπ(ˆxxˆ+ˆyyˆ)

∫λD

bπ/ 2

θ^2 bdb

=∆tfF(vF)dvF (ˆxˆx+ˆyˆy)

q^2 Tq^2 FlnΛ
4 πε^20 μ^2 vrel

. (13.36)


Sincevreldefines thezdirection, we may write

xˆxˆ+ˆyyˆ=I−

vrelvrel
v^2 rel

(13.37)


whereIis the unit tensor. Thus,


∆vrel∆vrel|allb,allφ=∆t

q^2 Tq^2 FlnΛ
4 πε^20 μ^2
fF(vF)dvF

(


vrel^2 I−vrelvrel
v^3 rel

)


. (13.38)


Using Eq.(13.12) this can be transformed to give

∆vT∆vT|allb,allφ=∆t

qT^2 q^2 FlnΛ
4 πε^20 m^2 T
fF(vF)dvF

(


v^2 relI−vrelvrel
v^3 rel

)


. (13.39)


The tensor may be expressed in a simpler form by noting

∂vT

∂vrel
∂vT

=



∂vT

vrel
vrel

=

I


vrel


vrel
vrel^2

vrel
vrel

=
vrel^2 I−vrelvrel
v^3 rel

. (13.40)


Inserting Eq.(13.40) in Eq.(13.39) and then integrating over all the field particles shows
that

∆vT∆vT
∆t



=


q^2 TqF^2 lnΛ
4 πε^20 m^2 T


fF(vF)dvF


∂vT


∂vT

|vT−vF|. (13.41)

However,vTis constant in the integrand and so∂/∂vTmay be factored from the integral.
Dropping the subscriptTfrom the velocity and changingvFto be the integration variable
v′this can be re-written as

∆v∆v
∆t



=


q^2 TqF^2 lnΛ
4 πε^20 m^2 T


∂v


∂v


|v−v′|fF(v′)dv′. (13.42)

It is convenient to define the Rosenbluth potentials


gF(v)=


|v−v′|fF(v′)dv′ (13.43)

hF(v)=

mT
μ


fF(v′)
|v−v′|

dv′ (13.44)
Free download pdf