Fundamentals of Plasma Physics

(C. Jardin) #1
14.3 Echoes 423

from thebpulse in the second ̃φextfactor in Eq.(14.135) will be considered. We therefore
substitute theacontribution in Eq.(14.137) for the first ̃φextfactor in Eq.(14.135) to obtain


̃φ 2 (p,k) = ωpπφa
k^2 D(p,k)

e
m


dv

∫∞


−∞

dk′
2 π

∫b+i∞

b−i∞

dp′
2 π

ikk′δ(k′±ka)
(p+ikv)^2 D(p′,k′)

×
i ̄k′
(p−p′)+i ̄k′v

̃φext((p−p′), ̄k′)
D(p−p′, ̄k′)

∂f ̄ 0
∂v

. (14.138)


The effect of theδ(k′±ka)factor when evaluating thek′integral is to forcek′→±ka
and also ̄k′→k∓kaso that


φ ̃ 2 (p,k) = ωp
k^2 D(p,k)

eφa
2 m


±


dv

∫b+i∞

b−i∞

dp′
2 π

(∓ikka)
(p+ikv)^2 D(p′,∓ka)

×


i (k∓ka)
p ̄′+i(k ∓ka)v

φ ̃ext( ̄p′,(k∓ka))
D( ̄p′,k∓ka)

∂f ̄ 0
∂v

. (14.139)


Now let us substitute for the secondφ ̃extfactor using the contribution from thebpulse to
obtain


φ ̃ 2 (p,k) = π
2 k^2 D(p,k)

e
m

φaφb


±


±


dv

∫b+i∞

b−i∞

dp′
2 π

(∓ikka)
(p+ikv)^2 D(p′,∓ka)

×


i (k∓ka)
p ̄′+i(k ∓ka)v

δ(k∓ka±kb)e−p ̄

′τ

D( ̄p′,k∓ka)

∂f ̄ 0
∂v

. (14.140)


The upper choice of the±and∓signs is selected and the inverse Fourier transform per-
formed to obtain


̃φupper 2 (p,x) = φaφb
4 k^2 D(p,k)

e
m

∫∞


−∞

dk


dv

∫b+i∞

b−i∞

dp′
2 π

(−ikka)
(p+ikv)^2 D(p′,−ka)

×

i (k−ka)
p ̄′+i(k−ka)v

δ(k−ka+kb)e− ̄p

′τ+ikx

D( ̄p′,k−ka)

∂f ̄ 0
∂v

=

φaφb
4(ka−kb)^2 D(p,ka−kb)

e
m


dv

∫b+i∞

b−i∞

dp′
2 π

×


i(ka−kb)
(p+i(ka−kb)v)^2

ka
D(p′,−ka)

ikb
p ̄′−ikbv

e− ̄p

′τ+i(ka−kb)x

D( ̄p′,−kb)

∂f ̄ 0
∂v

.


(14.141)


The lower choice of the±and∓signs means thatka→−kaandkb→−kband so at


the end of the calculationφ ̃


lower
2 (p,x)can also be determined by simply lettingka→−ka
Free download pdf