424 Chapter 14. Wave-particle nonlinearities
andkb→−kb.The inverse Laplace transform gives
φ ̃upper 2 (t,x) = φaφb
4(ka−kb)^2e
m∫b+i∞b−i∞dp
2 πi1
D(p,ka−kb)∫
dv∫b+i∞b−i∞dp′
2 π×ka
(p+i(ka−kb)v)^2 D(p′,−ka)ikb
p−p′−ikbv×
ept−(p−p′)τ+i(ka−kb)xD(p−p′,−kb)∂f ̄ 0
∂v. (14.142)
We first consider thep′integral and only retain the ballistic term due to the pole(p−p′)−
ikbv.Evaluating the residue associated with this pole givesp′=p−ikbvso
̃φupper 2 (t,x) = − φaφb
4(ka−kb)^2e
m∫b+i∞b−i∞dp1
D(p,ka−kb)∫
dvi(ka−kb)
(p+i(ka−kb)v)^2ikakb
D(p−ikbv,−ka)ept−ikbvτ+i(ka−kb)x
D(ikbv,−kb)∂f ̄ 0
∂v.
(14.143)
The pole at(p+i(ka−kb)v)^2 is second-order and so the rule for a second-order residue
should be used, i.e.,
∮
dp
1
(p−p 0 )^2g(p)=πi lim
p→p 0d
dpg(p). (14.144)Thus, we obtain
φ 2 (t,x) = −φaφbπi
4(ka−kb)^2e
m∫
dv lim
p→i(kb−ka)vd
dp
(
i(ka−kb)
D(p,ka−kb)ikakb
D(p−ikbv,−ka)ept−ikbvτ+i(ka−kb)x
D(ikbv,−kb)∂f ̄ 0
∂v)
.
(14.145)
The strongest dependence onpis in the exponentialeptand so retaining only the contribu-
tion of this term to thed/dpoperator gives
̃φupper 2 (t,x) = − πiφaφb
4(ka−kb)^2e
m∫
dv lim
p→i(kb−ka)v
(
ti(ka−kb)
D(p,ka−kb)ikakb
D(p−ikbv,−ka)ept−ikbvτ+i(ka−kb)x
D(ikbv,−kb)∂f ̄ 0
∂v)
=
π
4kakb
(ka−kb)^2eφaφb
m
ei(ka−kb)x∫
dvi(ka−kb)t
D(i(kb−ka)v,ka−kb)D(−ikav,−ka)ei(kb−ka)vt−ikbvτ
D(ikbv,−kb)∂f ̄ 0
∂v