Fundamentals of Plasma Physics

(C. Jardin) #1

424 Chapter 14. Wave-particle nonlinearities


andkb→−kb.The inverse Laplace transform gives


φ ̃upper 2 (t,x) = φaφb
4(ka−kb)^2

e
m

∫b+i∞

b−i∞

dp
2 πi

1


D(p,ka−kb)


dv

∫b+i∞

b−i∞

dp′
2 π

×

ka
(p+i(ka−kb)v)^2 D(p′,−ka)

ikb
p−p′−ikbv

×


ept−(p−p

′)τ+i(ka−kb)x

D(p−p′,−kb)

∂f ̄ 0
∂v

. (14.142)


We first consider thep′integral and only retain the ballistic term due to the pole(p−p′)−
ikbv.Evaluating the residue associated with this pole givesp′=p−ikbvso


̃φupper 2 (t,x) = − φaφb
4(ka−kb)^2

e
m

∫b+i∞

b−i∞

dp

1


D(p,ka−kb)


dv

i(ka−kb)
(p+i(ka−kb)v)^2

ikakb
D(p−ikbv,−ka)

ept−ikbvτ+i(ka−kb)x
D(ikbv,−kb)

∂f ̄ 0
∂v

.


(14.143)


The pole at(p+i(ka−kb)v)^2 is second-order and so the rule for a second-order residue
should be used, i.e.,

dp


1


(p−p 0 )^2

g(p)=πi lim
p→p 0

d
dp

g(p). (14.144)

Thus, we obtain


φ 2 (t,x) = −

φaφbπi
4(ka−kb)^2

e
m


dv lim
p→i(kb−ka)v

d
dp
(
i(ka−kb)
D(p,ka−kb)

ikakb
D(p−ikbv,−ka)

ept−ikbvτ+i(ka−kb)x
D(ikbv,−kb)

∂f ̄ 0
∂v

)


.


(14.145)


The strongest dependence onpis in the exponentialeptand so retaining only the contribu-
tion of this term to thed/dpoperator gives


̃φupper 2 (t,x) = − πiφaφb
4(ka−kb)^2

e
m


dv lim
p→i(kb−ka)v
(
ti(ka−kb)
D(p,ka−kb)

ikakb
D(p−ikbv,−ka)

ept−ikbvτ+i(ka−kb)x
D(ikbv,−kb)

∂f ̄ 0
∂v

)


=


π
4

kakb
(ka−kb)^2

eφaφb
m
ei(ka−kb)x


dv

i(ka−kb)t
D(i(kb−ka)v,ka−kb)D(−ikav,−ka)

ei(kb−ka)vt−ikbvτ
D(ikbv,−kb)

∂f ̄ 0
∂v

.


(14.146)

Free download pdf