14.3 Echoes 423from thebpulse in the second ̃φextfactor in Eq.(14.135) will be considered. We therefore
substitute theacontribution in Eq.(14.137) for the first ̃φextfactor in Eq.(14.135) to obtain
̃φ 2 (p,k) = ωpπφa
k^2 D(p,k)e
m∫
dv∫∞
−∞dk′
2 π∫b+i∞b−i∞dp′
2 πikk′δ(k′±ka)
(p+ikv)^2 D(p′,k′)×
i ̄k′
(p−p′)+i ̄k′ṽφext((p−p′), ̄k′)
D(p−p′, ̄k′)∂f ̄ 0
∂v. (14.138)
The effect of theδ(k′±ka)factor when evaluating thek′integral is to forcek′→±ka
and also ̄k′→k∓kaso that
φ ̃ 2 (p,k) = ωp
k^2 D(p,k)eφa
2 m∑
±∫
dv∫b+i∞b−i∞dp′
2 π(∓ikka)
(p+ikv)^2 D(p′,∓ka)×
i (k∓ka)
p ̄′+i(k ∓ka)vφ ̃ext( ̄p′,(k∓ka))
D( ̄p′,k∓ka)∂f ̄ 0
∂v. (14.139)
Now let us substitute for the secondφ ̃extfactor using the contribution from thebpulse to
obtain
φ ̃ 2 (p,k) = π
2 k^2 D(p,k)e
mφaφb∑
±∑
±∫
dv∫b+i∞b−i∞dp′
2 π(∓ikka)
(p+ikv)^2 D(p′,∓ka)×
i (k∓ka)
p ̄′+i(k ∓ka)vδ(k∓ka±kb)e−p ̄′τD( ̄p′,k∓ka)∂f ̄ 0
∂v. (14.140)
The upper choice of the±and∓signs is selected and the inverse Fourier transform per-
formed to obtain
̃φupper 2 (p,x) = φaφb
4 k^2 D(p,k)e
m∫∞
−∞dk∫
dv∫b+i∞b−i∞dp′
2 π(−ikka)
(p+ikv)^2 D(p′,−ka)×i (k−ka)
p ̄′+i(k−ka)vδ(k−ka+kb)e− ̄p′τ+ikxD( ̄p′,k−ka)∂f ̄ 0
∂v=φaφb
4(ka−kb)^2 D(p,ka−kb)e
m∫
dv∫b+i∞b−i∞dp′
2 π×
i(ka−kb)
(p+i(ka−kb)v)^2ka
D(p′,−ka)ikb
p ̄′−ikbve− ̄p′τ+i(ka−kb)xD( ̄p′,−kb)∂f ̄ 0
∂v.
(14.141)
The lower choice of the±and∓signs means thatka→−kaandkb→−kband so at
the end of the calculationφ ̃
lower
2 (p,x)can also be determined by simply lettingka→−ka