Statistical Methods for Psychology

(Michael S) #1

Lunneborg, C. E. (1994). Modeling experimental and observa-
tional data. Belmont, CA: Duxbury.
Lunneborg, C. E. (2000). Data analysis by resampling: Con-
cepts and applications. Pacific Grove, CA: Duxbury.
MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West,
S. G., & Sheets, V. (2002). A comparison of methods to test
mediation and other intervening variable effects. Psycholog-
ical Methods, 7 , 83–104.
Macnaughton, D. B. (1998). Which sums of squares are best
in unbalanced analysis of variance. Unpublished paper
available at http://www.matstat.com/ss/.
Maimaris, C., Summer, C. L., Browning, C., & Palmer, C. R.
(1994). Injury patterns in cyclists attending an accident and
emergency department: A comparison of helmet wearers and
non-wearers. British Medical Journal, 308 , 1537–1540.
Manly, B. F. J. (1997). Randomization,Bootstrap,and Monte
Carlo Methods in Biology(2nd ed.).London: Chapman
& Hall.
Mann-Jones, J. M., Ettinger, R. H., Baisden, J., & Baisden, K.
(Under review). Dextromethorphan modulation of context-
dependent morphine tolerance. Retrieved December 12,
2007 at http://www.eou.edu/psych/re/morphinetolerance.doc.
Manning, C. A., Hall, J. L., & Gold, P. E. (1990). Glucose
effects on memory and other neuropsychological tests in
elderly humans. Psychological Science, 1 , 307–311.
Mantel, N., & Haenszel, W. (1959). Statistical aspects of the
analysis of data from retrospective studies of disease.
Journal of the American Statistical Association, 22 ,
719–748.
Marascuilo, L. A., & Busk, P. L. (1987). Log-linear models: A
way to study main effects and interactions for multidimen-
sional contingency tables with categorical data. Journal of
Counseling Psychology, 34 , 443–455.
Marascuilo, L. A., & Serlin, R. C. (1990). Statistical meth-
ods for the social and behavioral sciences. New York:
Freeman.
Maris, E. (1998). Covariance adjustment versus gain
scores–revisited. Psychological Methods, 3 , 309–327.
Mauchly, J. W. (1940). Significance test for sphericity of a
normal n-variate distribution. Annals of Mathematical Sta-
tistics, 11 , 204–209.
Maxwell, A. E. (1961). Analyzing Quantitative Data. London:
Methuen.
Maxwell, S. E. (1980). Pairwise multiple comparisons in
repeated measures designs. Journal of Educational Statis-
tics, 5 , 269–287.
Maxwell, S. E., & Cramer, E. M. (1975). A note on analysis of
covariance. Psychological Bulletin, 82 , 187–190.
Maxwell, S. E., & Delaney, H. D. (1990). Designing experi-
ments and analyzing data: A model comparison approach.
Belmont, CA: Wadsworth.
Maxwell, S. E., Delaney, H. D., & Mannheimer, J. M. (1985).
ANOVA of residuals and ANCOVA: Correcting an illusion
by using model comparisons and graphs. Journal of Educa-
tional Statistics, 10 , 197–209.


McClelland, G. H. (1997). Optimal design in psychological
research. Psychological Methods, 2 , 3–19.
McClelland, G. H., & Judd, C. M. (1993). Statistical difficul-
ties of detecting interactions and moderator effects. Psycho-
logical Bulletin, 114 , 376–390.
McConaughy, S. H. (1980). Cognitive structures for reading
comprehension: Judging the relative importance of ideas in
short stories. Unpublished doctoral dissertation, University
of Vermont.
McGrath, R. E., & Meyer, G. J. (2006). When effect sizes dis-
agree: The case of rand d. Psychological Methods, 11 ,
386–401.
McNemar, Q. (1947). Note on the sampling error of the differ-
ence between correlated proportions or percentages. Psy-
chometrika, 12,153–157.
McNemar, Q. (1969). Psychological statistics (4th ed.). New
York: Wiley.
Miller, R. G., Jr. (1981). Simultaneous statistical inference
(2nd ed.). New York: McGraw-Hill.
Mireault, G. C., & Bond, L. A. (1992). Parent death in child-
hood, perceived vulnerability, and adult depression and
anxiety. American Journal of Orthopsychiatry, 62 ,
517–524.
Mood, A. M. (1950). Introduction to the theory of statistics.
New York: McGraw-Hill.
Mood, A. M., & Graybill, F. A. (1963). Introduction to the the-
ory of statistics (2nd ed.). New York: McGraw-Hill.
Mooney, C. Z., & Duval, R. D. (1993). Bootstrapping: A non-
parametric approach to statistical inference. Newbury Park,
CA: Sage.
Moore, D. S., & McCabe, G. P. (1989). Introduction to the
practice of statistics. New York: Freeman.
Murphy, K. R., & Myors, B. (1999). Statistical power analy-
sis: A simple and general model for traditional and modern
hypothesis tests. Mahwah, NJ: Erlbaum.
Myers, J. L. (1979). Fundamentals of experimental design
(3rd ed.). Boston: Allyn & Bacon.
Neyman, J., & Pearson, E. S. (1933). On the problem of the
most efficient tests of statistical hypotheses. Philosophic
Transactions of the Royal Society of London (Series A), 231 ,
289–337.
Neter, J., & Wasserman, W. (1974). Applied linear statistical
models.Homewood, IL: Richard D. Irwin.
Neyman, J., & Pearson, E. S. (1933). On the problem of the
most efficient tests of statistical hypotheses. Philosophic
Transactions of the Royal Society of London (Series A), 231 ,
289–337.
Nickerson, R. S. (2000). Null hypothesis significance testing:
A review of an old and continuing controversy. Psychologi-
cal Methods, 5 , 241–301.
Norton, D. W. (1953). Study reported in E. F. Lindquist,
Design and analysis of experiments in psychology and edu-
cation. New York: Houghton Mifflin.
Norusis, M. J. (1985). SPSSXadvanced statistics guide. New
York: McGraw-Hill.

References 731
Free download pdf