3.3 Solutions 187
3.39 (a)
[(
−
^2
2 m)
∇^2 +V
]
ψ(x,y,z)=Eψ(x,y,z)(1)PutV= 0
(
−^2
2 m)[
∂^2
∂x^2+
∂^2
∂y^2+
∂^2
∂z^2]
ψ(x,y,z)=Eψ(x,y,z)Letψ(x,y,z)=X(x)Y(y)Z(x) (2)YZ∂^2 X
∂x^2+ZX
∂^2 Y
∂y^2+XY
∂Z
∂z^2=−
(
2 mE
^2)
XY Z
Dividing throughout byXYZ1
Y∂^2 Y
∂y^2+
1
Z
∂^2 Z
∂z^2=−
1
X
∂^2 X
∂x^2−
2 mE
^2(3)
LHS is a function ofyandzonly while the RHS is a function ofxonly.
The only way (3) can be satisfied is that each side is equal to a constant, say –
α^2.
1
Xd^2 X
dx^2+
2 mE
^2−α^2 = 0∂^2 X
dx^2+
(
2 mE
^2−α^2)
X= 0
Or
∂^2 X
∂x^2+β^2 X= 0whereβ^2 =(
2 mE
^2)
−α^2 (4)X=Asinβx+BcosβxTake the origin at the corner
Boundary condition:X=0 whenx=0. This givesB=0.X=Asinβx
Further,X=0 whenx=aSinβa= 0 →βa=nxπOrβ=nxπ
a(nx=integer) (5)