1000 Solved Problems in Modern Physics

(Romina) #1

3.3 Solutions 223


Thus

ψ

(

1

2

,

1

2

)

=


2

3

φ(1,1)φ

(

1

2

,−

1

2

)



1

3

φ(1,0)φ

(

1

2

,

1

2

)

(11)

Similarly

ψ

(

1

2

,−

1

2

)

=


1

3

φ(1,0)φ

(

1

2

,−

1

2

)



2

3

φ(1,−1)φ

(

1

2

,

1

2

)

(12)

The coefficients appearing in (1), (2), (5), (6), (11) and (12) are known as
Clebsch – Gordon coefficients. These are displayed in Table 3.3.

3.87 In spherical coordinates


x=rsinθ cosφ;y=rsinθ sinφ;z=rcosθ (1)
So thatxy+yz+zx=r^2 sin^2 θsinφcosφ+r^2 sinθcosθsinφ
+r^2 sinθcosθcosφ (2)
The spherical harmonics are

Y 00 =

(

1

4 π

) 1 / 2

;Y 10 =

(

3

4 π

) 1 / 2

cosθ;Y 1 ± 1 =∓

(

3

8 π

) 1 / 2

sinθe±φ

Y 20 =

(

5

16 π

)^12

(3 cos^2 θ−1);Y 2 ± 1 =∓

(

15

8 π

)^12

sinθ cosθe±iφ;

Y 2 ± 2 =

(

15

32 π

) 1 / 2

sin^2 θe±^2 iφ (3)

Expressing (2) in terms of (3),

sin^2 θsinφcosφ=^1 / 2 sin^2 θsin 2φ=

Y 22 −Y 2 − 2

4 i

(

32 π
15

) 1 / 2

Similarly sinθcosθsinφ=

( 8 π
15

) 1 / (^2) (Y 21 −Y 2 − 1 )
2 i
sinθ cosθ cosφ=


(

8 π
15

) (^12)
(Y 21 −Y 2 − 1 )/ 2
Hence, xy+yz+zx = r^2
( 8 π
15


)^12

[(Y 22 −Y 2 − 1 )/i+(Y 21 +Y 2 − 1 )/ 2 i
+(Y 21 −Y 2 − 1 )/2]
The above expression does not containY 00 corresponding tol =0, nor
Y 10 andY 1 ± 1 corresponding tol=1. All the terms belong tol=2, and the
probability for findingl=2 and thereforeL^2 =l(l+1)= 6 ^2 is unity.

3.88 Lz=−i



∂φ
x=rsinθcosφ;y=rsinθ sinφ;z=rcosθ
ψ 1 =(x+iy)f(r)=rsinθ(cosφ+isinφ)f(r)
=(cosφ+isinφ)sinθF(r)
Free download pdf