Calculus of variations
Integrating by parts and using thaty(a)=y(b)= 00 =
Zbaq(t)y(t)+p(t)y^0 (t)dt==Zb
aq(t)y(t)dt+Zb
ap(t)y^0 (t)dt==Zb
aq(t)y(t)dt+[p(t)y(t)]ba Zb
ap^0 (t)y(t)dt==Zb
aq(t)y(t)dt Zb
ap^0 (t)y(t)dt==Zb
aIntegrating by parts and using thaty(a)=y(b)= 0Zbaq(t)y(t)+p(t)y^0 (t)dt==Zb
aq(t)y(t)dt+Zb
ap(t)y^0 (t)dt==Zb
aq(t)y(t)dt+[p(t)y(t)]ba Zb
ap^0 (t)y(t)dt==Zb
aq(t)y(t)dt Zb
ap^0 (t)y(t)dt==Zb
a