118 TIME-DEPENDENT CIRCUIT ANALYSIS
−++−+−V 1 = 462 ∠0 ̊ VI 1VL =?P 1 = 5 kW
Q 1 = kVAR G 1
−+
G 2
S 1 = kVAP 2 =?
Q 2 =?(1.4 + j1.6) Ω (0.8 +^ j1.0) ΩIL = I 1 + I 2415425PL = 10 kW
QL = kVAR
SL = kVA4304
50I 2
+−Load V 2 =?Figure E3.1.7(b) From Equation (3.1.37) applied to the load, 433. 8 IL( 0. 8 )= 10 × 103 ,orIL= 28 .8A.
As a phasor, withV ̄ 1 as reference,I ̄ 1 = 28. 8 −( 0 .78°+ 36 .9°)= 28. 8 − 37 .68° A.
The KCL equation yields:I ̄ 2 =I ̄L−I ̄ 1 = 15. 22 − 38 .33°The KVL equation yieldsV ̄ 2 =V ̄L+( 15. 22 − 38 .38°)( 0. 8 +j 1. 0 )= 4. 52. 75 − 0 .22° VThe terminal voltage ofG 2 is thus 452.75 V (rms).
(c) The power triangle values forG 1 and the load are shown in Figure E3.1.7 so that the
student can check it out.P 2 =V 2 I 2 cosφ 2 = 452. 75 × 15. 22 ×cos( 38 .38°− 0 .22°)
=5418 W,or 5.418 kW(Note thatφ 2 is the angle between phasorsV ̄ 2 andI ̄ 2 .)Q 2 =V 2 I 2 sinφ 2 = 452. 75 × 15 .22 sin( 38 .38°− 0 .22°)
=4258 VAR, or 4.258 kVARThe conservation of power (real and reactive) is satisfied as follows:PL+loss in feeder resistances= 10 +( 13. 53 )^21. 4
1000+( 15. 22 )^20. 8
1000∼= 10 .4kWwhich is the real power delivered byG 1 andG 2 , which in turn is the same asP 1 +P 2 =
5 + 5. 4 = 10 .4kW.QL+(I^2 XL)of feeders=30
4+( 13. 53 )^21. 6
1000+( 15. 22 )^21. 0
1000∼=8kVARwhich is the same as the reactive power delivered byG 1 andG 2 , which in turn is the
same asQ 1 +Q 2 =15
4+ 4. 26 ∼=8kVAR