662 SIGNAL PROCESSING
x(t)
x(t)
T
− 4
T
− 2
T
4
T
2
(a) (b)
−T
e−t
T
t
2 T
1
−T T
t
1
− 1
x(t)
(c)
t
1
2
2 T
3
T
x(t)
(d)
T
3
t
1
T
− 4
−
T
− 2
T
4
T
2
x(t)
(e)
t
1
1
T
3
2
−TT^2 T −
− 3
T
3
2 T
3
x(t)
(f)
t
1
Figure P14.1.14
(b) Using the result of Figure E14.1.4(a), find
the Fourier coefficients ofv(t).
*14.1.18The waveforms of Figure E14.1.4(b) and (c) are
given to haveA=πandT= 0 .2 ms.
(a) For 0≤f≤30 kHz, sketch and label the
amplitude spectra.
(b) ForAn<A 1 /5 for allnf 1 <W(whereA
stands for amplitude), determine the value of
Win each case.
14.1.19Consider Figure 14.1.5, withx(t)=3 cos 2πt
+cos(2π 3 t+180°),|H(f)|=1, and constant
phase shiftθ(f)=−90°. Sketchx(t) andy(t).
14.1.20The frequency response of a transmission system
is given by
|H(f)|=
1
√
1 +(f/fco)^2
;
θ(f)=−tan−^1
f
fco
wherefco=ωco/ 2 π=5 kHz. In order to satisfy
Equation (14.1.20), over the range of 0≤f≤