0195136047.pdf

(Joyce) #1
662 SIGNAL PROCESSING

x(t)

x(t)

T
− 4
T
− 2
T
4

T
2

(a) (b)

−T

e−t

T

t
2 T

1

−T T

t

1

− 1

x(t)

(c)

t

1

2

2 T
3

T

x(t)

(d)

T
3

t

1

T
− 4

T
− 2
T
4

T
2

x(t)

(e)

t

1

1
T
3

2

−TT^2 T −
− 3
T
3

2 T
3

x(t)

(f)

t

1

Figure P14.1.14

(b) Using the result of Figure E14.1.4(a), find
the Fourier coefficients ofv(t).

*14.1.18The waveforms of Figure E14.1.4(b) and (c) are
given to haveA=πandT= 0 .2 ms.
(a) For 0≤f≤30 kHz, sketch and label the
amplitude spectra.
(b) ForAn<A 1 /5 for allnf 1 <W(whereA
stands for amplitude), determine the value of
Win each case.
14.1.19Consider Figure 14.1.5, withx(t)=3 cos 2πt


+cos(2π 3 t+180°),|H(f)|=1, and constant
phase shiftθ(f)=−90°. Sketchx(t) andy(t).

14.1.20The frequency response of a transmission system
is given by
|H(f)|=
1

1 +(f/fco)^2

;

θ(f)=−tan−^1
f
fco
wherefco=ωco/ 2 π=5 kHz. In order to satisfy
Equation (14.1.20), over the range of 0≤f≤
Free download pdf