PROBLEMS 663
− 3
t
T/2 T
−T/2 T/4
−T/4
T/2
T/2
0
3
− 2
(a)
2
t
0
− 4
(b)
4
8
0 T t
(c)
6
− 6
Figure P14.1.15
10 kHz, withK=1, find and sketch the required
equalizer characteristics.
14.1.21The frequency response of a high-pass transmis-
sion system is given by
|H(f)|=
f/fco
1 +(f/fco)^2
;
θ(f)=90°−tan−^1 (f/fco)
withfco = ωco/ 2 π =100 Hz. Ifx(t)isa
triangular wave of Figure E14.1.4(b), withA=
π^2 /8 andT =25 ms, obtain an approximate
expression for the periodic steady-state response
y(t). See Figure 14.1.5.
14.2.1(a) Letx(t)=12 cos 2π 100 t+8 cos 2π 150 t,
andxc(t)=x(t) cos 2πfct, wherefc= 600
Hz. Sketch the amplitude spectrum.
(b) List all the frequencies in the productxc(t)
cos 2π 500 t, wherexc(t) is given in part (a).
14.2.2The input to the product modulator of Figure
14.2.1 is given byx(t)=8 cos 2π 3000 t+ 4
cos 2π 7000 t. The frequency of the carrier wave
is 6 kHz. Sketch the amplitude line spectrum of
the modulated wavexc(t).
*14.2.3Consider the following system withx(t)=12 cos
2 π 100 t+4 cos 2π 300 tand two ideal filters as
shown in Figure P14.2.3. Findxa(t) andxb(t).
14.2.4Consider the product modulator of Figure
14.2.4(a), where the oscillator generates
cos[2π(fc+f ) t+φ] in whichfandφare
synchronization errors. Findz(t) produced by the
following inputs, whenfm=1 kHz,f= 200
Hz, andφ=0:
(a) DSB inputxc(t)=4 cos 2πfmtcos 2πfct.
(b) Upper-sideband SSB inputxc(t)=2 cos
2 π(fc+fm)t.
(c) Lower-sideband SSB inputxc(t)=2 cos
2 π(fc−fm)t.