840 APPENDIX D
D.3 DERIVATIVES AND INTEGRALS
Derivatives:
d
dx(a)= 0 ,whereais a fixed real numberd
dx(x)= 1d
dx(au)=adu
dx,whereuis a function ofx
d
dx(u±v)=du
dx±dv
dx,whereuandvare functions ofxd
dx(uv)=udv
dx+vdu
dx
d
dx(u
v)=vdudx−udvdx
v^2=1
vdu
dx−u
v^2dv
dx
d
dx(un)=nun−^1du
dx
d
dx[f (u)]=d
du[f (u)]·du
dx
d
dx(lnu)=1
udu
dx;d
dx(lnx)=1
x
d
dx(loga u)=(logae)1
udu
dx
d
dx(eu)=eudu
dx;d
dxeax=aeaxd
dx(sinu)=du
dx(cosu);d
dxsinax=acosaxd
dx(cosu)=−du
dx(sinu);d
dxcosax=−asinaxIntegrals:
∫
(a+bx)ndx=(a+bx)n+^1
(n+ 1 )b,n=− 1
∫
dx
a+bx=1
bln|a+bx|
∫
dx
a^2 +b^2 x^2=1
abtan−^1bx∫ a
xdx
a^2 +x^2=1
2ln(a^2 +x^2 )
∫
x^2 dx
a^2 +x^2=x−atan−^1x∫ a
dx
(a^2 +x^2 )^2=x
2 a^2 (a^2 +x^2 )+1
2 a^3tan−^1x∫ a
xdx
(a^2 +x^2 )^2=− 1
2 (a^2 +x^2 )