0195136047.pdf

(Joyce) #1
MATHEMATICAL RELATIONS 841


x^2 dx
(a^2 +x^2 )^2

=

−x
2 (a^2 +x^2 )

+

1
2 a

tan−^1

x
a

lnxdx=xlnx−x

eaxdx=

eax
a

,areal or complex

xeaxdx=eax(

x
a


1
a^2

),areal or complex


x^2 eaxdx=eax(
x^2
a


2 x
a^2

+
2
a^3

),areal or complex


x^3 eaxdx=eax(

x^3
a


3 x^2
a^2

+

6 x
a^3


6
a^4

),areal or complex

eaxsin(x) dx=

eax
a^2 + 1

[asin(x)−cos(x)]

eaxcos(x) dx=

eax
a^2 + 1

[acos(x)+sin(x)]

cos(x) dx=sin(x);


cosax dx=

1
a

sinax

xcos(x) dx=cos(x)+xsin(x)

x^2 cos(x) dx= 2 xcos(x)+(x^2 − 2 )sin(x)

sin(x) dx=−cos(x);


sinax dx=−

1
a

cosax

xsin(x) dx= sin(x)−xcos(x)

x^2 sin(x) dx= 2 xsin(x)−(x^2 − 2 )cos(x)

∫∞

−∞

e−a

(^2) x (^2) +bx
dx=

π
a
eb
(^2) /( 4 a (^2) )
,a> 0
∫∞
0
x^2 e−x
2
dx=

π
4
∫∞
0
Sa(x) dx=
∫∞
0
sin(x)
x
dx=
π
2
∫∞
0
Sa^2 (x) dx=
π
2

Free download pdf