0195136047.pdf

(Joyce) #1

852 APPENDIX H


∫t

0

f(τ)g(t−τ ) dτ F (s)G(s)

Multiplication byt
(frequency differentiation)

tf (t) −
d
ds[F(s)]

Division byt
(frequency integration)

1
t
f(t)

∫∞

s

F(s) ds

Time delay or shift f(t−T)·u(t−T) e−sTF(s)

Periodic function
f(t)=f(t+nT )

f(t), 0 ≤t≤T F (s)/[1−eTs],whereF(s)=

∫T

0

f(t)e−stdt

Exponential translation
(frequency shifting)

e−atf(t) F(s+a)

Change of scale
(time scaling)

f(at), a > 0
1
a
F(
s
a
)

Initial value f( 0 +)=lim
t→ 0
f(t) slim→∞sF (s)
Final value f(∞)=tlim→∞f(t), lim
s→ 0
sF (s)
where limit exists [sF (s)has poles only inside the left half of thes-plane.]

Table of Laplace Transform Pairs

f(t)=La−^1 [F(s)] F(s)=La[f(t)]

δ(t)(unit impulse or delta function) 1
δ(t−T) e−sT
a a
s
u(t)or 1 (unit step function)
1
s
u(t−T)
e−sT
s
t
1
s^2
(t−T ) u(t−T)
e−sT
s^2
tu(t−T)
( 1 +sT )e−sT
s^2
tn,(n−integer)
n!
sn+^1
tn−^1 /(n− 1 )!,nan integer^1
sn
e−at
1
s+a
te−at
1
(s+a)^2
e−attn n!
(s+a)n+^1
e−at−e−bt
b−a

1
(s+a)(s+b)
sinωt ω
s^2 +ω^2
Free download pdf