852 APPENDIX H
∫t
0
f(τ)g(t−τ ) dτ F (s)G(s)
Multiplication byt
(frequency differentiation)
tf (t) −
d
ds[F(s)]
Division byt
(frequency integration)
1
t
f(t)
∫∞
s
F(s) ds
Time delay or shift f(t−T)·u(t−T) e−sTF(s)
Periodic function
f(t)=f(t+nT )
f(t), 0 ≤t≤T F (s)/[1−eTs],whereF(s)=
∫T
0
f(t)e−stdt
Exponential translation
(frequency shifting)
e−atf(t) F(s+a)
Change of scale
(time scaling)
f(at), a > 0
1
a
F(
s
a
)
Initial value f( 0 +)=lim
t→ 0
f(t) slim→∞sF (s)
Final value f(∞)=tlim→∞f(t), lim
s→ 0
sF (s)
where limit exists [sF (s)has poles only inside the left half of thes-plane.]
Table of Laplace Transform Pairs
f(t)=La−^1 [F(s)] F(s)=La[f(t)]
δ(t)(unit impulse or delta function) 1
δ(t−T) e−sT
a a
s
u(t)or 1 (unit step function)
1
s
u(t−T)
e−sT
s
t
1
s^2
(t−T ) u(t−T)
e−sT
s^2
tu(t−T)
( 1 +sT )e−sT
s^2
tn,(n−integer)
n!
sn+^1
tn−^1 /(n− 1 )!,nan integer^1
sn
e−at
1
s+a
te−at
1
(s+a)^2
e−attn n!
(s+a)n+^1
e−at−e−bt
b−a
1
(s+a)(s+b)
sinωt ω
s^2 +ω^2