Solutions 213
(b) Differentiator:
A(n,k) =
0 •
0 •
0-
- 0
- 0
n;=i»
0
0
0
0
[B(
0 0 0
0 0
o IlEj-'i o
0 0
0 0 0
n,k)\N(n,h)]->
III
[/„-
0
0
0
0
=n-fc+l l.
-*+i|0]
= [N(n,k)\B(n,k)]
Then,
K{A) = Span{ | Y[i J ei,--- , I J| i J e„_fc+i
V*=l
= Span{ei,.--,en_fc+1}=R"-fc+1.
7e(Ar) = Sp«n<M JJi J efc+x,-- , I JJ i\e„
I \i=l / \j=n-fc+l /
= Span{ek+1,--- , en} = R"-fc+1.
/o\l
0
A/"(i4) = Span < > = Span{ei,--- ,ek} = '.
IW \0/J
M{AT) = {0} , dimM(AT) = 0.