Principles of Mathematics in Operations Research

(Rick Simeone) #1
Solutions 221

(b) Let us take the first three columns of A 2 as the basis:

B

"2 13"
1 32
32 1

, N =

"10"
01
_10_

, XB

Xi
X2
Xi

, XN =

X4
X 5

Let XN — 0. Then, BXB — b 2 is solved by LU decomposition as above:
"2
Lc = b 2 & k 10 c 2 = 19 & < => c 2 = 18
ci = 3

r
2


  • 1
    ii
    3 7 L
    3 10
    1 00_


Cl"
C2
.C3.

_

" 8"
19
3

=*> C3 — y-

£/x = c<£>

"321"
0 1 s U
3 3

(^00) T
Xi
«2
Xz


3"
18
60


. 7.


=> Xl = --
<=>
^3^10 3

X 2 = f


XS =
XJV = [1,1]

11 16 10]T
3 ' 3 ' 3 J •
"T Then,

If XJV ^ 6, then x# = [• -j±,f,f]T -B^NXN. Let


xB

Xl
X2
.X3.

=


  • 11 •
    3
    16
    3
    10










_5_
18
_7_
18
_i_
18

1
L J^1

1
_ 6

"-23"
31
19_
Final check:

A 2 x =

A 2 x =

2 13 10
13201
32 110

2 1310
1320 1
32 110


  • 11 •
    3
    16
    3
    10
    3
    0
    0_


=

8"
19
3

/

-23
31
19
6
6

19
3

/

(c)

A* =

" 1
4
7

2"
5
8
.10 11.

J A 3

147 10
258 11

AJA 3 =


166 188
188 214

A^A^ is clearly invertible, and (A3A3) l =


107
90
_47
45

47
"45
83
90
Free download pdf