Solutions 221
(b) Let us take the first three columns of A 2 as the basis:
B
"2 13"
1 32
32 1
, N =
"10"
01
_10_
, XB
Xi
X2
Xi
, XN =
X4
X 5
Let XN — 0. Then, BXB — b 2 is solved by LU decomposition as above:
"2
Lc = b 2 & k 10 c 2 = 19 & < => c 2 = 18
ci = 3
r
2
- 1
ii
3 7 L
3 10
1 00_
Cl"
C2
.C3.
_
" 8"
19
3
=*> C3 — y-
£/x = c<£>
"321"
0 1 s U
3 3
(^00) T
Xi
«2
Xz
3"
18
60
. 7.
=> Xl = --
<=>
^3^10 3
X 2 = f
XS =
XJV = [1,1]
11 16 10]T
3 ' 3 ' 3 J •
"T Then,
If XJV ^ 6, then x# = [• -j±,f,f]T -B^NXN. Let
xB
Xl
X2
.X3.
=
- 11 •
3
16
3
10
_5_
18
_7_
18
_i_
18
1
L J^1
1
_ 6
"-23"
31
19_
Final check:
A 2 x =
A 2 x =
2 13 10
13201
32 110
2 1310
1320 1
32 110
- 11 •
3
16
3
10
3
0
0_
=
8"
19
3
/
-23
31
19
6
6
19
3
/
(c)
A* =
" 1
4
7
2"
5
8
.10 11.
J A 3
147 10
258 11
AJA 3 =
166 188
188 214
A^A^ is clearly invertible, and (A3A3) l =
107
90
_47
45
47
"45
83
90