222 Solutions
{AIM -i AT A^1 =
107
90
_iZ
45
47
45
83
90
147 10
2 58 11
J 7 1_ 2
10 15 30 5
4 13 J 3_
5 30 15 10
x = (AUsr
1
A
T
b 3 Xi
X2
_9 7 L 2
10 15 30 5
4 13 J _3_
5 30 15 10
[21
5
6
LsJ
34 "
30
53
30
The A3 — QR decomposition is given below:
Q =
-0.07762 -0.83305 -0.39205 -0.38249
-0.31046 -0.45124 0.23763 0.80220
-0.54331 -0.06942 0.70087 -0.45693
-0.77615 0.31239 -0.54646 0.03722
R =
-12.8840 -14.5920
0.0000 -1.0413
0.0000 0.0000
0.0000 0.0000
The equivalent system Rx — QTb$ is solved below:
QTh =
-0.07762 -0.31046 -0.54331 -0.77615
-0.83305 -0.45124 -0.06942 0.31239
-0.39205 0.23763 0.70087 -0.54646
-0.38249 0.80220 -0.45693 0.03722
(9)
-11.1770
-1.8397
0.2376
0.8022
Rx =
*2 = E$S = 1-7667
12.8840 -
0.0000
0.0000
0.0000
-14.5920
-1.0413
0.0000
0.0000
Xi
X2
-11.1770
-1.8397
0.2376
0.8022
Xi -11.177-1.7667(-14.592) -12.884 = -1.1333
(0)
The two solutions, (9) and (
A 3 x =
" 1 2"
4 5
7 8
.10 11.
-1.1333
1.7667
=
2.4201
4.3503
6.2805
8.2107
^
"2"
5
6
.8.
= 63