Principles of Mathematics in Operations Research

(Rick Simeone) #1
222 Solutions

{AIM -i AT A^1 =

107
90
_iZ
45

47
45
83
90

147 10
2 58 11

J 7 1_ 2
10 15 30 5
4 13 J 3_
5 30 15 10

x = (AUsr

1

A

T

b 3 Xi

X2

_9 7 L 2
10 15 30 5
4 13 J _3_
5 30 15 10

[21
5
6

LsJ


34 "
30
53
30

The A3 — QR decomposition is given below:

Q =

-0.07762 -0.83305 -0.39205 -0.38249
-0.31046 -0.45124 0.23763 0.80220
-0.54331 -0.06942 0.70087 -0.45693
-0.77615 0.31239 -0.54646 0.03722

R =

-12.8840 -14.5920
0.0000 -1.0413
0.0000 0.0000
0.0000 0.0000
The equivalent system Rx — QTb$ is solved below:

QTh =

-0.07762 -0.31046 -0.54331 -0.77615
-0.83305 -0.45124 -0.06942 0.31239
-0.39205 0.23763 0.70087 -0.54646
-0.38249 0.80220 -0.45693 0.03722

(9)

-11.1770
-1.8397
0.2376
0.8022

Rx =

*2 = E$S = 1-7667

12.8840 -
0.0000
0.0000
0.0000

-14.5920
-1.0413
0.0000
0.0000

Xi
X2

-11.1770
-1.8397
0.2376
0.8022

Xi -11.177-1.7667(-14.592) -12.884 = -1.1333

(0)

The two solutions, (9) and (), are equivalent.


A 3 x =

" 1 2"
4 5
7 8
.10 11.

-1.1333
1.7667

=

2.4201
4.3503
6.2805
8.2107

^

"2"
5
6
.8.

= 63
Free download pdf