230 Solutions
Problems of Chapter 5
5.1
Proof. Let Q~lAQ = A and Q~l = QT,
yTAy Xiyf + • • • + XnVl
x = Qy => R(x) =
yTy vi + '-' + vl
2/1 = 1,2/2 = • • • = yn = 0 => Ai < i?(x) since
Ai(2/f + ' •' + Vl) < Aiy? + •' • + A„2/£ «= Ai = min {AJf=1.
Similarly, A„(A) — max||x||=i xTAx. D
5.2
i. xTAx > 0, Vx ^ 0;
xr.4x = [xix 2 x 3 ] ——
100
"2 10'
12 1
01 1
Xi
^2
.X3.
— [2x1 + xix2 + xxx 2 + 2x2 + ^2X3 + x 2 x 3 + X3]
100
-^ [(xi + x 2 f + (x 2 + x 3 )^2 + xi] > 0, Vx ^ 6\
ii. All the eigen values of A satisfy A, > 0;
det(,I-A) = —
100s - 2 -1 0
-1 100s-2 -1
0 -1 100s - 1
= 0<£>
s^3 -0.05s^2 +0.0006s-0.000001 = (s-0.002)(s-0.01552)(s-0.03248) = 0
=> Ai = 0.002 > 0, A 2 = 0.01552 > 0, A 3 = 0.03248 > 0!
iii. All the submatrices Ak have nonnegative determinants;
Since each entry of A is nonnegative, all 1 x 1 minors are OK.
= 1>0
= 1 >0
= 2>0
2 1
1 2
2 1
01
12
01
= 3>0,
= 2>0,
= 1>0,
20
1 1
20
01
1 1
01
= 2>0,
= 2>0,
= 1 >0,
10
21
10
1 1
2 1
1 1
All 2 x 2 minors are OK.