Solutions 2312 1 0
1 2 1
0 1 1= 1 = 106 det(^) > 0!The 3x3 minor, itself, is OK as well,
iv. All the pivots (without row exchanges) satisfy di > 0;"2 10"
12 1
01 1<-*"2 1 0'
0|1
0 1 1_<-)•"2 1 0"
0*1
L°°|Jdi T|>0,d^A>o,rf3 = ^>0!
v. 3 a possibly singular matrix W B A = WTW;Aand W = i1
loo"2 10"
1 2 1
01 1 -{i"1 10"
0 1 1
001 }(i"100"
1 10
01 1= WTW100
1 10
01 1is nonsingular!5.3V/(x) =1L
dxi
dx 2x\ + Xi + 2X2
2xx + x 2 - 1xi = 1 — 2xi(an - l)(ari - 2) = 0Therefore,xA —1
-1 , xB =2
-3are stationary points inside the region defined by — 4 < x 2 < 0 < xi < 3.
Moreover, we have the following boundaries
xi =" 0 "
LX2\, XII =
' 3 "
1^2 Jand xin = Xi -4 , Xiv
Xl
0defined by
xc =[ol
0 , xD =[ ol
-4_ , xE =[3]
0 , XF =[ 3]
-4Let the Hessian matrix be
V^2 f(x) =
(^2) J_
dx\dx\ dx\dx^
a^2 f
dxzdxi Qx^dx^
2xi + 1 2
2 1