Principles of Mathematics in Operations Research

(Rick Simeone) #1

248 Solutions


xB = B~lb =

[10-1]
01 0
10 0

[10"
8
2

=

[ 6"
10
8
We are on point D.

z = cTBxB = [0,2,2]

6
10 = 36.

cl-clB^N =[1,0,0] -[0,2,2]

Thus, D is the optimal point.


  1. simplex tableau:


"10 -1"
0 1 0
10 0

"20 1"
010
000

= [-3,-2,-2].

«1
Xz
x 2
z

X\ X 2 X 3 Si S 2
2 0 0 10

S3
1
0 0 10 1 0
0 1 0 0 0-1
-10 0 0 2 -2

RHS~
6
10
2
24

S3
2^3
x 2
z

Xi X 2 X 3 Si S 2 S 3
2 0 0 10 1
0 0 10 10
2 10 0 0 0
3 0 0 2 2 0

RHS'
6
10
8
36.


  1. revised simplex with product form of the inverse:


Let xB = (s 1 ,x 3 ,a;2)T, xN = (a;i,s 2 ,s 3 )T- Then, B~l

10-1
0 1 0
00 1

w = c
T
BB~
l = [0,2,2].

rXl =cXl ~wNXl =1-[0,2,2]

cS2 - wNS2 = 0 - [0,2,2]

uNS3 =0-[0,2,2]

0
1
0
0
0
-1

S3 is the entering variable and Si leaves. Ex l =

xB = £ 1 -^1 6= (6,8,10)T.

= 1>0.

= -2<0.

= 2>0.

f00
-flO
-^01
Free download pdf