248 Solutions
xB = B~lb =
[10-1]
01 0
10 0
[10"
8
2
=
[ 6"
10
8
We are on point D.
z = cTBxB = [0,2,2]
6
10 = 36.
cl-clB^N =[1,0,0] -[0,2,2]
Thus, D is the optimal point.
- simplex tableau:
"10 -1"
0 1 0
10 0
"20 1"
010
000
= [-3,-2,-2].
«1
Xz
x 2
z
X\ X 2 X 3 Si S 2
2 0 0 10
S3
1
0 0 10 1 0
0 1 0 0 0-1
-10 0 0 2 -2
RHS~
6
10
2
24
S3
2^3
x 2
z
Xi X 2 X 3 Si S 2 S 3
2 0 0 10 1
0 0 10 10
2 10 0 0 0
3 0 0 2 2 0
RHS'
6
10
8
36.
- revised simplex with product form of the inverse:
Let xB = (s 1 ,x 3 ,a;2)T, xN = (a;i,s 2 ,s 3 )T- Then, B~l
10-1
0 1 0
00 1
w = c
T
BB~
l = [0,2,2].
rXl =cXl ~wNXl =1-[0,2,2]
cS2 - wNS2 = 0 - [0,2,2]
uNS3 =0-[0,2,2]
0
1
0
0
0
-1
S3 is the entering variable and Si leaves. Ex l =
xB = £ 1 -^1 6= (6,8,10)T.
= 1>0.
= -2<0.
= 2>0.
f00
-flO
-^01