THE BOUNDARY LAYER 287
Solution
The shear stress in the fluid at the surface:RD ux/y
From the equation given: RD 0. 03 u^2 s
/usx^0.^2
∴ uxD
0. 03 u^2 sy/
/usx^0.^2
If the velocity at the edge of the laminar sub-layer isub,uxDubwhenyDυb.
∴ ubD
0. 03 u^2 sυb/
/usυ^0.^2
and:
υb/υD 33. 3
ub/us
/usυ^0.^8
From equation 11.24, the velocity distribution is given by:
υb/υ^1 /^7 D
ub/us
and hence:
ub/us 7 D 33. 3
ub/us
/usυ^0.^8
or:
ub/us D 1. 65
/usυ^0.^115
D 1. 65 Reυ^0.^115
Substituting 0. 376 x^0.^8
/us^0.^2 forυfrom equation 11.29:
ub/us D 1 .65[0. 376 usx^0.^8 0.^2 /
u^0 s.^2 ^0.^2 ]^0.^115
D
1. 65 / 0. 3760.^115
us^0.^8 x^0.^8 ^0.^8 / ^0.^8 ^0.^115
D 1. 85 Rex^0.^09
Now:
υb/υD
ub/us 7 D 74. 2 Re^0 x.^63
From equation 11.31:
υ/xD 0. 376 Rex^0.^2
∴
υb/xD
74. 2 ð 0. 376 /
Re^0 x.^63 Re^0 x.^2
D 27. 9 Rex^0.^83
In this case: RexD
1 ð 5 ð 1. 3 / 17 ð 10 ^6
D 3. 82 ð 105
υbD 1. 0 ð 27. 9
3. 82 ð 105 ^0.^83
D 6. 50 ð 10 ^4 mor 0.65 mm
PROBLEM 11.6
Obtain the momentum equation for an element of the boundary layer. If the velocity profile
in the laminar region can be represented approximately by a sine function, calculate the
boundary layer thickness in terms of distance from the leading edge of the surface.