4.6 Hessenbergians 91Ifaij= 0 whenj−i>1, the triangular array of zero elements appears
in the top right-hand corner.Hncan be expressed neatly in column vector
notation.
LetCjr=[
a 1 ja 2 ja 3 j...arjOn−r]T
n, (4.6.2)
whereOirepresents an unbroken sequence ofizero elements. Then
Hn=∣
∣
C 12 C 23 C 34 ...Cn− 1 ,nCnn∣
∣
n. (4.6.3)
Hessenbergians satisfy a simple recurrence relation.
Theorem 4.20.
Hn=(−1)n− 1n− 1
∑r=0(−1)
r
pr+1,nHr,H 0 =1,where
pij={
aijaj,j− 1 aj− 1 ,j− 2 ···ai+2,i+1ai+1,i,j>iaii,j=i.Proof. ExpandingHnby the two nonzero elements in the last row,
Hn=annHn− 1 −an,n− 1 Kn− 1 ,whereKn− 1 is a determinant of order (n−1) whose last row also contains
two nonzero elements. ExpandingKn− 1 in a similar manner,
Kn− 1 =an− 1 ,nHn− 2 −an− 1 ,n− 2 Kn− 2 ,whereKn− 2 is a determinant of order (n−2) whose last row also contains
two nonzero elements. The theorem appears after these expansions are
repeated a sufficient number of times.
Illustration.
H 5 =
∣
∣C
12 C 23 C 34 C 45 C 55
∣
∣=a
55 H 4 −a 54∣
∣C
12 C 23 C 34 C 54
∣
∣,
∣
∣C
12 C 23 C 34 C 54
∣
∣=a
45 H 3 −a 43∣
∣C
12 C 23 C 53
∣
∣,
∣
∣C
12 C 23 C 53
∣
∣=a
35 H 2 −a 32∣
∣C
12 C 52
∣
∣,
∣
∣C
12 C 52
∣
∣=a
25 H 1 −a 21 a 15 H 0.Hence,
H 5 =a 55 H 4 −(a 45 a 54 )H 3 +(a 35 a 54 a 43 )H 2−(a 25 a 54 a 43 a 32 )H 1 +(a 15 a 54 a 43 a 32 a 21 )H 0=p 55 H 4 −p 45 H 3 +p 35 H 2 −p 25 H 1 +p 15 H 0.Muir and Metzler use the termrecurrentwithout giving a definition of theterm. Arecurrentis any determinant which satisfies a recurrence relation.