Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
4.10 Henkelians 3 131

=


i,j,r,s

AisAjr

(2i−1)(2j−1)

[p

2
x

2(i+j−1)
+q

2
y

2(i+j−1)
−1]

=


i,j,r,s

(i+j−1)aijAisArj

(2i−1)(2j−1)

=

1
2


i,j,r,s

(

1

2 i− 1

+

1

2 j− 1

)

aijAisArj

=


i,j,r,s

aijAisArj

2 i− 1

=


i,s

Ais

2 i− 1


r


j

aijArj

=A


i,s

Ais

2 i− 1


r

δir

=−AW

which proves the theorem. 


Theorem 4.40.


p

2
V

2
(x)+q

2
V

2
(y)=W

2
−AW.

This theorem resembles Theorem 4.39 closely, but the following proof

bears little resemblance to the proof of Theorem 4.39. Applying double-sum


identity (D) in Section 3.4 withfr=randgs=s−1,



r


s

[

p

2
x

2(r+s−1)
+q

2
y

2(r+s−1)
− 1

]

A

is
A

rj
=(i+j−1)A

ij
,

p

2

[


s

A

is
x

2 s− 1

][


r

A

rj
x

2 r− 1

]

+q

2

[


s

A

is
y

2 s− 1

][


r

A

rj
y

2 r− 1

]


[


s

A

is

][


r

A

rj

]

=(i+j−1)A

ij
.

Put


λi(x)=


j

A

ij
x

2 j− 1
.

Then,


p

2
λi(x)λj(x)+q

2
λi(y)λj(y)−λi(1)λj(1)=(i+j−1)A

ij
.

Divide by (2i−1)(2j−1), sum overiandjand note that



i

λi(x)

2 i− 1

=−

V(x)

A

.
Free download pdf